Date: Jhye 10/19

Today's Learning Goal(s):

By the end of the class, I will be able to:

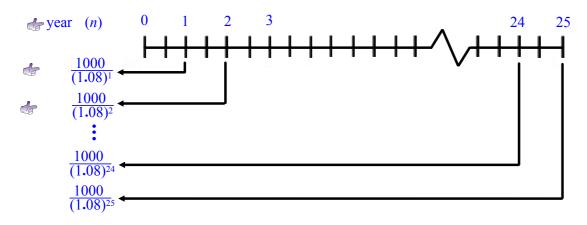
a) calculate the "present value" of an annuity earning compound interest.

Quiz tomorrow

Last day's work: pp. 511-512 #2, 5ac, 6, 7

p. 511 5. Calculate the future value of each annuity.

p. 511	K Care	ulate the future value of	cacif affiliately.				
		Regular Payment	Rate of Compound Interest per Year	Compounding Period	Time		
	a)	\$1500 per year	6.3%	annually	10 years		
	b)	\$250 every 6 months	3.6%	semi-annually	3 years		Q = (
	c)	\$2400 per quarter	4.8%	quarterly	7 years		
	d)	\$25 per month	8%	monthly	35 years		
50)	0 1	2	<i>b</i>		$\frac{a(r)}{r}$	n_ ()	(=
Jaj		b	1200 (1+0,003)	<i>J</i> n -	<u></u>	_	i = 0
		// 10	1500(170005)				· ·
	S10=						= 0
		1.063 - 1					- ^
	= 1	1.063 - 1)-()				· · · · · =
		0.063					10 - 17
	= 20	051.963					$M = \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} dx$
		0051.96					_ /(


8.5 Annuities: Present Value

Date: Jhye 10/19

Ex.1 In June, Ms. Sterlo decides to deposit some money into a fund to provide a \$1000 commencement scholarship at the end of each school year for the next 25 years.

The fund will pay 8% /a compounded annually. How much needs to be invested now?

$$A = P(1+i)^n \qquad \therefore P = \frac{A}{(1+i)^n}$$

(It is easier to start at the bottom; it makes "r" nicer.)

$$S_{25} = \frac{1000}{(1.08)^{25}} + \frac{1000}{(1.08)^{24}} + ... + \frac{1000}{(1.08)^2} + \frac{1000}{(1.08)}$$

This is a **Geometric Series**, with $a = \frac{1000}{(1.08)^{25}}$, r = 1.08, n = 25

Use
$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$S_{25} = \frac{1000}{(1.08)^{25}} (1.08^{25} - 1)$$

$$1.08 - 1$$

$$10.674.776$$

$$= $10.674.78$$

: a sum of \$10 674.78 invested now would provide a payment of \$1000 for each of the next 25 years.

Discuss Interest earned?

$$$1000 \times 25$$
= $$25000$
- $$10674.78$
 $$14325.22$

Ex.2

At the end of university you owe \$20 000.

Determine your monthly paymentat 6% /a compounded monthly for 5 years.

Use
$$P = \frac{A}{(1+i)^n}$$
 $= 0.06$
 $year \ge 0$ $= 0.005$
 $(n) \ge 0$ 1 2 3 4 5 6 7 8 9 10 11 12 58 59 60
 $\frac{x}{(1.005)^{1}}$ $\frac{x}{(1.005)^{60}}$ Amount from each payment applied to the principal.

Use
$$S_n = \underline{a(r^n - 1)}_{r - 1}$$
 $a = \underline{x}_{(1.005)^{60}}$, $r = 1.005$, $n = 60$, $S_{60} = 20\ 000$

$$20\ 000 = \frac{\frac{x}{(1.005)^{60}}(1.005^{60}-1)}{1.005-1}$$
 .005

Solve for x.

$$20\ 000\ (.005) = \frac{x}{(1.005)^{60}}(1.005^{60}-1)$$

$$\Rightarrow$$
 20 000(.005)(1.005)⁶⁰ = x (1.005⁶⁰ – 1)

$$\frac{20\ 000(.005)(1.005)^{60}}{(1.005^{60}-1)} = x$$

$$x = 386.656$$

 \therefore the monthly payment is \$386.66

Another formula:

$$PV = \frac{R[1 - (1 + i)^{-n}]}{i}$$
 where R is the regular payment *i* is the interest rate per compound period *n* is the number of compound periods

Read p. 518 Example 3 Read the Key Ideas/Need to Know p.519

Today's Homework Practice includes: pp. 520-521 #1, 2b, 3ac, 5, 7 Quiz tomorrow