Date:

Begin with **SWYK 8.1** (formative), then correct in class.

Today's Learning Goal(s):

By the end of the class, I will be:

a) ready for the Unit 8 Summative.

Last day's work: pp. 520-521 #1, 2b, 3ac, 5, 7

- p. 520 1. Each situation represents a loan.
 - i) Draw a timeline to represent the amount of the original loan.
 - ii) Write the series that represents the amount of the original loan.
 - iii) Calculate the amount of the original loan.
- iv) Calculate the interest paid. b)

$++$ \wedge	-/		a)
0 (3	3.5	b)
34.73			c)
[1.009)			d)

	19
0 (3	3.5
84.73	
(1.009)	
•	
V.	
84.73	
(1,009)14	
$(ii)_{C} = \alpha (c^{N})$	
$((i))$ $S_n = \alpha \left(\bigcap_{i=1}^{N} A_i \right)$	

$(1.009)^{14}$
(ii) $S_n = \alpha (\cap -1)$
Sy= 84.73 (1.009 -1)
0.009
= 1109.851 = \$1109.85

Regular Payment	Rate of Compound Interest per Year	Compounding Period	Time
\$650 per year	3.7%	annually	5 years
\$1200 every 6 months	9.4%	semi-annually	9 years
\$84.73 per quarter	3.6%	quarterly	$3\frac{1}{2}$ years
\$183.17 per month	6.6%	monthly	10 years

	r=1+i = 1.009
iv)	I = payment 10tal-Principal (PV)
	= (84.73)(14) - 1109.85
	= 11,86.22-1109.85
	=76.37

- p. 520 2. Each situation represents a simple, ordinary annuity.

 - i) Calculate the present value of each payment.
 ii) Write the present values of the payments as a series.
 - iii) Calculate the present value of the annuity.

	Regular Payment	Rate of Compound Interest per Year	Compounding Period	Time	
a)	\$8000 per year	9%	annually	7 years	
b)	\$300 every 6 months	8% =0.08	semi-annually	3.5 years	
(c)	\$750 per quarter	8%	quarterly	2 years	2 2.5 3 3.5
	0.08	n=3.5×2 =7	0	23	4 56 7
(r=1+c	(300		
	r-1=0-04		300 0417		
Sn=	$\alpha(r^{n}-1)$		- 300	74D	2n+n
St =	7-1 305 (1.04)7 (1.647		$h = \frac{300}{1.047} + \frac{1}{1}$		_
•	0.04	()	$P_1 = \frac{300}{1.04}$	P7=	7.047
,	800.616		= 288.16	Ž	227.975
	1800.62			-	= 227.98

p. 520 <u>3.</u> Calculate the present value of each annuity.

a) b)

d)

Regular Payment	Rate of Compound Interest per Year	Compounding Period	Time
\$5000 per year	7.2%	annually	5 years
\$250 every 6 months	4.8%	semi-annually	12 years
\$25.50 per week	5.2%	weekly	100 weeks
\$48.50 per month	23.4%	monthly	$2\frac{1}{2}$ years

$$\frac{(1.901)_{100}}{52.20}$$

$$i = \frac{0.052}{50} \qquad a = 25.50$$

$$= 0.001 \qquad (1.001)^{100} \qquad N = 100$$

$$5n = \frac{a(n-1)}{c-1}$$

$$\int_{00} = \frac{|00|}{|00|} (|00| - 1)$$

$$= (25.50) (|00| - 1)$$

$$= (25.50) (|00| - 1)$$

$$= (25.50) (|00| - 1)$$

$$= (25.50) (|00| - 1)$$

$$= (25.50) (|00| - 1)$$

$$= (25.50) (|00| - 1)$$

Formulae

Simple Interest

$$I = Prt$$
$$A = P(1 + rt)$$

$$A = P + I$$
$$I = A - P$$

Annuity

Annuity
$$S_n = \frac{a(r^n - 1)}{r - 1}$$
Future Value
$$FV = \frac{R\left[\left(1 + i\right)^n - 1\right]}{i}$$
Present Value
$$PV = \frac{R\left[1 - \left(1 + i\right)^{-n}\right]}{i}$$

Compound Interest

$$A = P(1 + i)^n$$
 Future Value

$$P = \frac{A}{(1+i)^n}$$
 Present Value

$$PV = \frac{R\left[1 - \left(1 + i\right)^{-n}\right]}{i}$$

8.R2 Review (Day 2)

Ex.1 Note the rounding error.

$$R = 28$$

$$FV = 28 \left((1+i)^{\frac{420}{2}} \right) \frac{.08}{12} = \frac{8}{1200}$$

$$i = \frac{.08}{12} = ?$$

$$= 25 \left((1+\frac{i}{120})^{\frac{420}{2}} \right) = i$$

$$= 57,347.06$$

$$OR if i = .0066$$

$$FV = 25 \left(1.0066^{\frac{420}{2}} \right)$$

$$= 56,233.37$$
Anote than
$$= 56,233.37$$

$$= 56,233.37$$
Anote than
$$= 56,233.37$$

$$= 56,233.37$$
Anote than
$$= 56,233.37$$

$$= 56,233.37$$

$$= 5000$$

$$= 56,233.37$$

$$= 5000$$

$$= 56,233.37$$

Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 520-521 #1, 2b, 3ac, 5, 7

Today's Homework Practice includes:

Be fully prepared for Thursday's **Unit 8 Summave**!

pp. 534-535 #1 – 15, 17 p. 536 #1 – 5

8.5 Annuities: Present Value, pp. 520–522

1. a) i) There are 5 payments: i = 3.7%/a compounded annually

ii)
$$PV = 650(1.037)^{-1} + 650(1.037)^{-2} + 650(1.037)^{-3} + \cdots + 650(1.037)^{-5}$$

iii)
$$PV = 650 \times \frac{1 - 1.037^{-5}}{0.037} = $2918.24$$

$$PV = \frac{650}{1.037^{5}} + \frac{650}{1.037^{4}} + \frac{650}{1.037^{3}} + \frac{650}{1.037^{3}} + \frac{650}{1.037^{4}} +$$