Before we begin, are there any questions from last day's work?

pp. 329-331 # 7, 11, 2, 4, 5 Extra Practice p.330 # 9, 10

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) use the exponent laws to simplify and evaluate expression
- b) solve exponential equations by using common bases.

1.5.1: Simplifying and Evaluating Expressions Using the Laws of Exponents

Date: Sept. 11/19

Ex. 1 Evaluate without using a calculator. [You must use the laws of exponents]

a)
$$3^{-2}$$
 b) $\left(\frac{1}{4}\right)^{-2}$ c) $\frac{1}{4^{-2}}$ d) $\left(\frac{3}{4}\right)^{-2}$ e) $\left(-\frac{2}{5}\right)^{-3}$ f) $\left(\frac{81}{16}\right)^{\frac{1}{2}}$ g) $27^{\frac{2}{3}}$ h) $64^{\frac{4}{3}}$ i) $\left(\frac{16}{81}\right)^{\frac{1}{4}}$

$$= \left(\frac{1}{3}\right)^{2} = \left(\frac{4}{1}\right)^{3} = \left(\frac{4}{1}\right)^{3} = \left(\frac{4}{1}\right)^{3} = \left(\frac{1}{3}\right)^{3} = \left(\frac{1}{3}\right)^{3}$$

a)
$$\sqrt{x^6 y^{12}}$$

$$= (x^6)^{\frac{1}{3}} = (x^6)^{$$

d)
$$\sqrt{81x^{16}y^{100}} (2x^{-4}y^{3})^{2}$$

$$= \sqrt{81}(x^{(6)})^{\frac{1}{5}} (y^{(00)})^{\frac{1}{5}} (2x^{-4}y^{3})^{2}$$

$$= 9 \times 8 y^{50}, 4 \times 8 y^{6}$$

$$= 36 \times 8 + (-8) y^{50} + 6$$

$$= 36 y^{56}$$

$$= \frac{1}{4^{2}} = (\frac{1}{16})^{2} = (\frac{1}$$

Ex. 3

a) Simplify $\frac{a^3b^2c^3}{\sqrt{a^2b^4}}$, and then evaluate for a=4, b=9, and c=-3.

$$= \frac{a^{3}b^{2}c^{3}}{(a^{3}b^{4})^{\frac{1}{2}}}$$

$$= \frac{a^{3}b^{2}c^{3}}{(a^{3}b^{4})^{\frac{1}{2}}}$$

$$= \frac{a^{3}b^{2}c^{3}}{(a^{3}b^{4})^{\frac{1}{2}}}$$

$$= \frac{a^{3}b^{2}c^{3}}{a^{1}b^{3}}$$

$$= \frac{a^{3}b^{2}c^{3}}{a^{2}c^{3}}$$

$$= \frac{a^{3}b^{2$$

b) Verify your answer by evaluating the expression *without* simplifying first.

$$= \frac{(4)^{3}(9)^{3}(-3)^{3}}{\sqrt{(4)^{3}(9)^{4}}}$$

$$= \frac{(4)^{3}(9)^{4}(-3)^{4}}{\sqrt{(81)(-27)}}$$

$$= \frac{-139968}{\sqrt{(64)^{4}}}$$

$$= \frac{-139968}{324}$$

$$= -432$$

1.5.2: Solving Exponential Equations Using Common Bases

Ex. 1 Solve each exponential equation by determining a common base.

a)
$$2^x = 32$$

· X=J

$$3^{5\times +8} = (3^3)^{2}$$

$$3^{5 \times 18} = 3^{5 \times 18}$$

$$5k-3k=-8$$

$$2x=-8$$

$$X=-\frac{8}{2}$$

$$X=-\frac{9}{2}$$

$$4^{3x} = 8^{x+1}$$

e)
$$4^{3x} = 8^{x+1}$$

$$(2^{3})^{3x} = (2^{3})^{x+1}$$
 $3(2^{x-1}) = 96$
 $2^{6x} = 2^{3x+3}$ $3(2^{x-1}) = 96$

$$3.6X = 3x+3$$

$$6x - 3x = 3$$

$$3x = 3$$

$$\therefore X = 1$$

b)
$$3^{5x+8} = 27^x$$

$$2 = 32$$

$$3 = 27$$

$$3 = 27$$

$$3 = 27$$

$$3 = 27$$

$$3 = 27$$

$$3 = 27$$

$$3 = 27$$

$$3 = 27$$

$$3 = 27$$

$$3 = 27$$

$$3 = 3$$

$$4 = 2$$

$$3 = 3$$

$$4 = 2$$

$$3 = 3$$

$$4 = 2$$

$$3 = 3$$

$$4 = 2$$

$$3 = 3$$

$$4 = 2$$

$$3 = 3$$

$$4 = 3$$

$$4 = 2$$

$$3 = 3$$

$$4 = 3$$

$$4 = 2$$

$$3 = 3$$

$$4 = 3$$

$$4 = 2$$

$$3 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4 = 3$$

$$4$$

$$3^{5}X+8=3^{3}X$$

$$X = -8$$

$$X = -8$$

f)
$$3(2^{x-1}) = 96$$

$$\frac{3(3^{X-1})=96}{3}$$

$$3 = 32$$

c)
$$3^{2x+5} = 27^{4x}$$

$$3^{2\times 15}$$
 $= 3^{12\times}$

$$3^{2\times 15} = (3^3)^{4\times}$$

$$-10x = -5$$
 $x = -\frac{5}{10}$
 $x = 3$

g)
$$5(3^{x+3}) = 405$$

$$3^{\times +3} = 81 \qquad 2^{\frac{1}{2}} = 2^{\times +2}$$

$$3^{X+3} = 3^4$$
 : $\frac{1}{3} = 2X+2$

d)
$$4^{5x-1} = 2^{2(x+11)}$$
 **

$$35 = (3)$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3 = 3$$

$$3$$

$$2x+5=12x$$
 $1.10x-2=2x+22$

$$2X - 12X = -5$$
 $10Y - 2X = 22 + 2$

h)
$$\sqrt{2} = 4^{x+1}$$

$$\frac{1}{2} - 2 = 2X$$

i) How could you check your solutions using graphing technology?

Answer: Use the intersection method; i.e. $y_1=2^x$, $y_2=32$

Review the learning goals. Were we successful today?

Homework: p.387 #1, 2a, 3a, 5, 6 Worksheet 1.5.3

Answer any remaining homework questions Students ask for "at desk" clarification. 1.5.3 Solving Exponential Equations Using Common Bases

Date: ____

1. Solve each exponential equation by determining a common base.

a)
$$2^x = 64$$

b)
$$5^{2x+6} = 125$$

b)
$$5^{2x+6} = 125$$
 c) $5^x = \frac{1}{25}$ d) $4^x = \frac{1}{8}$

d)
$$4^x = \frac{1}{8}$$

2. Simplify.

a)
$$\frac{27^3 \times 9^{-2}}{81}$$

b)
$$\frac{25^{m+3n}}{125^{2m+1}}$$

3. Solve.

a)
$$3(2^x) = 48$$

b)
$$4(7^{2x-1}) = 28$$
 c) $9^{x+1} = 27^{3x-4}$ d) $2^{2x+4} - 5 = 59$

c)
$$9^{x+1} = 27^{3x-4}$$

d)
$$2^{2x+4} - 5 = 59$$

4. Solve.

a)
$$2^{x^2+5x} = 64$$

b)
$$(3^{x-3})^x = \frac{1}{9}$$

c)
$$3^{3x+1} = 27(9^x)$$

b)
$$(3^{x-3})^x = \frac{1}{9}$$
 c) $3^{3x+1} = 27(9^x)$ d) $(2^{x+2})(4^{x-1})(8^{2x-3}) = 256^x$

Answers

b)
$$\frac{-3}{2}$$

b)
$$\frac{-3}{2}$$
 c) -2 d) $\frac{-3}{2}$ 2a) 3 b) $5^{6n-4m-3}$ b) 1 c) 2 d) 1 4a) -6 or 1 b) 2 or 1 c) 2 d) 9