Before we begin, are there any questions from last day's work?

p. 338 # 4, 6, 7

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) draw upon prior knowledge of exponential functions
- b) make connections between related logarithmic and exponential equatior through investigation

1.7.2: Connections Between Logarithmic and Exponential Equations

Consider the graphs of $y = 2^x$ and $y = \log_2 x$.

1. Using the graphs of $y = 2^x$ and $y = \log_2 x$ complete the following tables of values.

x	$y = 2^x$
0	1 👈
2	4 🐁
3	8

x	$y = \log_2 x$
1	0 👈
4	2-5
8	3

- 2. What relationship exists between $y = 2^x$ and $y = \log_2 x$? Explain your findings.
 - They are inverse functions.

$$(x,y) \Rightarrow (y,x)$$

Ex (0, 1) maps to (1, 0)

(4, 2) maps to (2, 4) (see the graph)

3a) If x = 5, evaluate $y = 2^x$.

$$v = 2^5$$

$$\therefore y = 32$$

$$\therefore 32 = 2^5$$

b) If x = 32, evaluate $y = \log_2 x$.

$$y = \log_2 32$$

$$\therefore y = 5$$

$$\therefore 5 = \log_2 32$$

4. For each function noted below, determine the logarithmic equation.

$$y = 3^x$$

$$y = 5^x$$

$$y = 11^{x}$$

$$log_3 y = x$$

$$\log_{5} v = x$$

$$d_{5} \log_{5} y = x \qquad d_{5} \log_{11} y = x$$

5. For each function noted below, determine the exponential function.

$$y = \log_4 x$$

$$y = \log_8 x$$

$$y = \log_{11} x$$

$$\Delta x = 4^y$$

$$-x = 8^y$$

$$-x = 11^{y}$$

6. If you were asked to solve $3^x = 10$, how might you use the corresponding logarithmic equation to help you solve the equation? What other strategy would you consider using?

$$\leftarrow \log_3 10 = x$$

Other Strategies

Trial and Error (Systematic Trial)

$$43^2 = 9$$

$$3^3 = 27$$

 $\therefore x \doteq 2.$

$$y_1 = 3^x$$
 $y_2 = 10$

$$y_2 = 10$$

1.7.3 Coach and Be Coached

Date: _____

<u>Instructions</u>: One of you is partner A and the other is partner B.

Go through each row by having partner A coach partner B by using appropriate math terms and procedures. Switch roles and continue through the entire set of questions.

A coaches B	B coaches A
If $x = 64$, evaluate $y = \log_2 x$. $y = \log_2 64$	If $x = 81$, evaluate $y = \log_3 x$. $y = \log_3 81$
$so, 2^{y} = 64$ $\therefore y = 64$	$so, 3^{y} = 81$ $\therefore y = 4$
For the function $y = 6^x$, determine the logarithmic equation $\log_6 y = x$ or $x = \log_6 y$	For the function $y = 8^x$, determine the logarithmic equation $\log_8 y = x$ or $x = \log_8 y$
For the function $y = \log_7 x$, determine the exponential equation. $ x = 7^y $	For the function $y = \log_9 x$, determine the exponential equation.
Solve $3^x = 32$. (round to 2 decimal places) $x \doteq 3.16$	Solve $2^x = 20$. (round to 2 decimal places)

Short cuts = "Laws of Logarithms"

Ex. 1 If
$$b^x = a$$
 and $x = \log_b a$ and $x = \log_2 32$ and $x = \log_3 32$ and $x = \log_3 32$ then $x = \frac{\log a}{\log b}$ then $x = \frac{\log 32}{\log 2}$ then $x = \frac{\log 32}{\log 2}$ (check) $x = 3.1546$ $x = 3.1546$ $x = 3.1546$ $x = 3.155$

(round to 3 decimal places)

Now solve #6 from 1.7.2 $3^x = 10$

First, convert the equation to logarithmic form. $x = \log_3 10$

² Apply the law of logs

$$x = \frac{\log 10}{\log 3}$$

Use a scientific calculator to evaluate

Note: the "Log" key by itself is base 10

i.e.
$$\log 1000 = 3$$
; $\log 100 = 2$; $\log 0.1 = 1$; $\log_{10} 1000 = 3$
 $\therefore 10^3 = 1000$

Sept. 13, 2019

Review the learning goals. Were we successful today? Homework: p. 344 # 7, 10(a,b), 11

Answer any remaining homework questions Students ask for "at desk" clarification.