Before we begin, are there any questions from last day's work?

pp.217-218 1, 2c, 3d, 4b, 6, 7

SWYK 2.1 is first.

# Today's Learning Goal(s):

By the end of the class, I will be able to:

a) use a quadratic model to solve a problem with and without technology. Solve <u>graphically</u>:  $x^3 + 2x = 5x - 10$  $x^3 = 5x - 2x - 10$   $y = x^3$  y = 3x - 10



$$y = 3x - 10$$

$$y = x^3$$

- 6. a) In exercise 1b, can you be sure there are two equal negative zeros? Explain.
  - b) If there are not two equal negative zeros, what other possibilities are there for this function?
  - c) How could you tell which possibility in part b is correct? Explain.
- **b)**  $g(x) = -x^3 3x^2 + 5x + 16$



- 7. Consider the equation  $x^2 2x = 20$ .
  - a) Solve the equation by graphing  $y = x^2 2x$  and y = 20 and using the points of intersection to determine the roots.
  - b) Solve the equation by graphing  $y = x^2 2x 20$  and using the x-intercepts to determine the roots.
  - c) Compare the methods in parts a and b.
    - i) Does one method give more accurate results than the other? Explain.
    - ii) Is one method more reliable than the other? Explain.

# Today's Learning Goal(s):

By the end of the class, I will be able to:

a) use a quadratic model to solve a problem with and without technology.

## 2.8.1 Modeling using Quadratic Functions

Date:  $\frac{Q_{c}}{1}$ ,  $\frac{3}{19}$ 

Sixteen metres of fencing are available to enclose a rectangular garden.

- a) Represent the area of the garden as a function of the length of one side.
- b) Graph the function.
- c) What dimensions provide an area greater than 12 m<sup>2</sup>?

Solution

a) Let w represent the width of the garden in m. Let l represent the length of the garden in m.



$$P = 2l + 2w$$
  
 $16 = 2l + 2w$   
 $8 = l + w$   
 $8 - w = l$ 





20

15

10





c) Draw in the horizontal line y = 12.

The intersection points represent the width of the garden when the area is 12m2.

if the width is between (but NOT INCLUDING) 2 and 6 m, the dimensions provide an area greater than 12m2.

This is written 2 < w < 6

if c) asked <12 m² .: 05 wcd and 6(w68

### 2.8.1 Modeling using Quadratic Functions

#### Ex. 2

When bicycles are sold for \$300 each, a cycle store can sell 160 in a season.

For every \$25 increase in the price, the number sold drops by 10.

- a) Represent the sales revenue as a function of the price.
- b) Use a graphing calculator to graph the function.
- c) How many bicycles were sold when the total sales revenue is \$33 000? What is the price of <u>one</u> bicycle?
- d) What range of prices will give sales revenue that exceeds \$40 000?

#### Solution

a) The quantities that vary all need to be defined (as variables).

Let *p* represent the selling price, in dollars. Let *n* represent the number of bicycles sold. Let *R* represent the revenue, in dollars.

Revenue = (price of a bicycle) x (number of bicycles sold)

p x (needs to be represented as a function of price)

(This is the hardest part of this problem.)

3 increases of \$25

### Rough work:

i) the price increase = p - 300

Check: If the new price is \$375,  
then the price increase= 
$$p-300$$
  
=  $375-300$   
=  $75$ 

ii) the number of \$25 increases 
$$= p - 300 \over 25$$
 Check: If the new price is \$375, then the number of \$25 increases  $= \frac{375 - 300}{25}$   $= \frac{75}{25}$ 

iii) the number of bicycles sold 
$$= 160 - 10 \left( \frac{p - 300}{25 \cdot 5} \right)$$

$$= 160 - 2 \left( \frac{p - 300}{5} \right)$$

$$= 160 - \frac{2}{5} (p - 300)$$

$$= 160 - \frac{2}{5} p + 120$$

$$= -\frac{2}{5} p + 280$$

$$\Rightarrow -\frac{2}{5} p + 280$$

$$\Rightarrow -\frac{2}{5} p + 280$$

Now, Revenue = (price of a bicycle) x (number of bicycles sold)
$$= p\left(-\frac{2}{5}p + 280\right)$$

$$= -\frac{2}{5}p^2 + 280p$$
or  $(=-0.4p^2 + 280p)$ 

b) Use a graphing calculator to graph the function.

let 
$$y_1 = -0.4x^2 + 280x$$
 or  $y_1 = -\frac{2}{5}x^2 + 280x$ 





c) How many bicycles were sold when the total sales revenue is \$33 000? What is the price of one bicycle?



Find the intersection points to represent the price of one bicycle when the revenue is \$33 000.

or 
$$p = 550$$

∴ the price of one bicycle is \$150

or **\$550** 

Recall: Revenue = (price of a bicycle) x (number of bicycles sold)

if 
$$p = 150$$
 price of a bicycle or if  $p = 550$ 

= 220

number of bicycles = 
$$\underline{33\ 000}$$

∴ **60** bicycles were sold if the sales revenue is \$33 000. (since the price *increases* will result in *lower* sales)

d) What range of prices will give sales revenue that exceeds \$40 000?

If 
$$R = 40\ 000$$
, let  $y_3 = 40000$ 

(Don't forget to "turn off"  $y_2$ )

Find the intersection points to represent the price of one bicycle when the revenue is exactly \$40 000.

$$p = 200$$
 or  $p = 500$ 

Because we want when the revenue exceeds \$40 000, we DO NOT INCLUDE the intersection points in the solution.

: if 
$$R > $40\,000$$
, then **200** <  $p < 500$