2.8.1 Modelling using Quadratic Functions (Fall 2019)-f19p October 3, 2019

Before we begin, are there any questions from last day's work?
pp.217-218 1, 2¢, 3d, 4b

SWYK 2.1 is first.

Today's Learning Goal(s):

By the end of the class, | will be able to:

a) use a quadratic model to solve a problem with
and withouttechnology.
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2¢)  Solve graphically: x* +2x =5x-10 3 )
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B. a) In exercise Ib, can you be sure there are two equal negative zeros? Explain.

b) If there are not two equal negative zeros, what other possibilities are there
for this function?

¢) How could you tell which possibility in part b is correct? Explain.

b) g(x) = =% =32 4+ 55 + 16
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7. Consider the equation x> — 2x = 20,
a) Solve the equation by graphing y = x* = 2x and y = 20 and using the
points of intersection to determine the roots.

b) Solve the equation by graphing y = x* = 2x — 20 and using the
x-intercepts to determine the roots,

¢) Compare the methods in parts a and b.

i) Does one method give more accurate results than the other? Explain.

i) Is one method more reliable than the other? Explain.
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Today's Learning Goal(s):
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a) use a quadratic model to solve a problem with
and withouttechnology.
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2.8.1 Modeling usmg Quadratic Functions Date:_ Ocf, 3 //9

Ex.1

Sixteen metres of fencing are available to enclose a rectangular garden.

a) Represent the area of the garden as a function of the length of one side.
b) Graph the function. X

¢) What dimensions provide an area greater than 12 m™?

Solution A a
a) Letw represent the width of the garden in m. an

Let [ represent the length of the garden in m. -

l
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Since A=Iw p P ® >

=(8—w)w 3 105
- 3w v

b) = - FEw A

the zeros (x-intercepts) are 0 and 8 2

Find the vertex half way between the zeros,

or complete the square to get A = -1(w—4)2 + 16 18
= DRSS Sy oA e ! >

A= -y« )
= (4 ) ) 5

\\(c [/,/lD * 5 \ 10 %,

c) Draw in the horizontal line y = 12.
The intersection points represent the width of the garden when the area is 12mz2,
..if the width is between (but NOT INCLUDING) 2 and 6 m,
the dimensions provide an area greater than 12m2,
This is written 2 <w <6
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2.8.1 Modeling using Quadratic Functions

Ex. 2

When bicycles are sold for $300 each, a cycle store can sell 160 in a season.

For every §25 increase in the price, the number sold drops by 10.

a) Represent the sales revenue as a function of the price.

b) Use a graphing calculator to graph the function.

¢} How many bicycles were sold when the total sales revenue is $33 0007
What is the price of one bicycle?

d) What range of prices will give sales revenue that exceeds $40 0007

Solution
a) The quantities that vary all need to be defined (as variables).

Let p represent the selling price, in dollars.
Let n represent the number of bicyeles sold.
Let R represent the revenue, in dollars.

Revenue = (price of a bicycle) x (number of bicyeles sold)
2 X (needs to be represented as a function of price)

™~ (This is the hardest part of this problem.)

Rough work:
i) the price increase =p — 300 Check: If the new price is $375,
then the price increase= p—300
= 375-300
= 75
i1) the number of $25 increases = p-300 Check: Ifthe new price 1s $375,
25 then the mumber of $25 mcreases = 375300
25
= 15
25
= 3 increases of $25
. 2 p—300 ,
iif) the number of bicycles sold ~=160—-10] | «<Show Cancelling
kN %5;
PP,
—160—2( 2220
L5 ) -60 v
160-2(p-300) N ?(/Z{T/G
ST e 7
=160—§p—120 & - [RO
— % p+280
Now, Revenue = (price of abicycle) x (number of bicycles sold)

4 2 h
=p| —§p+280J

Y
p.

2 -
=-=p +280p
5

or (=—-0.4p*+280p)



2.8.1 Modelling using Quadratic Functions (Fall 2019)-f19p October 3, 2019

b) Use a graphing calculator to graph the function.

3 2,
let y, =—0.4x"+280x or y = ot 280x

v X-Axis add a labe
=50 =< x = 800 Step: 30
v Y-Axis add a labe
—6000 =y =< 60000 Step: 3000

¢) How many bicycles were sold when the total sales revenue is $33 0007
What is the price of one bicycle?

If R =33 000, let 3, =33000 Find the intersection points to represent the price of one bicycle
- when the revenue is $33 000.

/’ﬁ\ - p= 150 or p=550

..the price of one bicycle is $150 or $550

Recall: Revenue = (price of a bicycle) x (number of bicycles sold)

\ f

=150 =550 .. number of bicyeles sold = Revenue
price of a bicycle

ifp= 150 ' or ifp=550
number of bicycles = 33 000 E or number of bicycles = 33 000
150 E 550
=220 or =60

- B0 bicycles were sold if the sales revenue is $33 000.
(since the price increases will result in lower sales)

d) What range of prices will give sales revenue that exceeds $40 000?

If R =40 000, let y; =40000 (Don’t forget to “turn off™ y,)

Find the intersection points to represent the price of one bicycle
when the revenue is exactly $40 000.

- p=200 or p=500

et

Because we want when the revenue exceeds $40 000,
we DO NOT INCLUDE the intersection points in the solution.

. if R = $40 000, then 200 < p< 500

Assigned Work pp. 224-225 #4(a-c), 6, 7, 10
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