Before we begin, are there any questions from last day's work?

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) make connections between polynomials given in factored form, and the *x*-intercepts of the graph of the polynomial.
- b) identify the zeros of a function or the roots of the corresponding equation and the connection between the two.

Be ready for Unit 2 Summative Tomorrow!!

3.1.1: Up to Now \	With Poly	ynomials
--------------------	-----------	----------

Date:		

Anticipation Guide

Instructions:

- Check "Agree" or "Disagree" beside each statement *before* you start the task.
- Compare your choice and explanation with a partner.
- Revisit your choices after completing the <u>Part C</u> on BLM 3.1.2.

Before		Statament	After	
Agree	Disagree	Statement		Disagree
		The zeros are the y-intercepts on a given graph.		
		The solutions of an equation and the zeros of a function are the same thing.		
		3. $x^2 + 5x + 6$ is $(x+3)(x+2)$ in factored form.		
		All parabolas have at least one root/solution.		
		5. The degree of the polynomial $y = 3x^2 - 6x^3 - 2$ is 5.		
		6. The function $y = (x-4)(x+5)$ has two real solutions/roots.		
		7. The function $y = (x - 4)(x - 4)$ has one real solution/root.		
		8. The graph of $y = -7x^3 - 1$ is linear.		
		9. All cubic functions have at least one root/solution.		

3.1.2: Getting to Know Polynomials

Part A: Before you begin, change your window settings to:

- Date: $0 \leftarrow 8/19$ $-10 \le x \le 10$
- 1. For each function in the chart below, do the following:
 - Set the function equal to zero and solve.
 - · Sketch a graph of the function.
 - Determine the x-intercept.

Y-	A	ĸis

$$-24 \le y \le 20$$

Function	Solution when y = 0	Sketch	x-intercept
$y = 2x + 16$ $O = 0 \times f(6)$	$\begin{array}{c} (0)=2x+16 \\ -2x=16 \\ x=-8 \end{array}$		-8
5x + 2y - 20 = 0	5x+2(0)-20=0 5x-20=0 5x=20 x=4		4
y = -6(x+3)	(0) = -6(x+3) 0 = x+3 x = -3		-3

2. Compare your answer for the solutions to the x-intercepts. What do you notice?

The x-intercept is the solution when y=0.

3. If you were given the function 5y = 10, how many x-intercepts would it have? Justify your answer.

Zero. Make a quick sketch.

Part B: Use the same window settings as in Part A to complete the chart below.

Function	Solution when y = 0	Sketch	x-intercept
Recall: If $A \times B = 0$ A S $\beta = 0$ $y = -2(x - 4)(x + 1)$	$(0) = -2(x-4)(x+1)$ $\therefore x-4=0 \text{ or } x+1=0$ $x=4 \text{ or } x=-1$		4,-1
y = -4.9(x - 2) ²	$(0) = -4.9(x-2)^{2}$ $\therefore x-2=0 \text{ or } x-2=0$ $x=2 \text{ or } x=2$		2
y = x ² + x - 20	y = (x-4)(x+5) (0) = (x-4)(x+5) x-4=0 or x+5=0 $x=4 or x=-5$		4,-5
$y = x^{2} + 4x - 16$ $y = (x + 2)^{2} - 20$	$y = x^{2}+4x+2^{2}-2^{2}-16$ $y = x^{2}+4x+4(4-16)$ $(0) = (x+2)^{2}-20$ $20 = (x+2)^{2}$ $\pm \sqrt{20} = x+2$ $x=-2+\sqrt{20}$ $x=-2\pm 4.472$ $\therefore x=2.472 \text{ or } x=-6.472$		2.472 , -6.472
$y - x^{2} + 6x + 10$ $y = (x + 3)^{2} + 1$ v(-3, 1)	$y = x^{2}+6x+3^{2}-3^{2}+10$ $y = \frac{x^{2}+6x+9-9+10}{(0) = (x+3)^{2}+1}$ $-1 = (x+3)^{2}$ $\pm \sqrt{-1} = x+3$ ∴ no Real roots		no Real roots

4. Which form of a quadratic function is easier to use for solving algebraically?

□ Factored form □ Standard form (choose one). Give reasons.

Part C: Before you begin, change your window settings to:

X-Axis $-10 \le x \le 10$ Y-Axis $-150 \le y \le 50$

Function	Solution when y = 0	_≤y≤ <u>₃o</u> Sketch	x-intercept
y = (x - 6)(x + 2)(x + 5)	$(0) = (x-6)(x+2)(x+5)$ $\therefore x-6=0 \text{ or } x+2=0 \text{ or } x+5=0$ $x=6 \text{ or } x=-2 \text{ or } x=-5$	7	6, -2, -5
y = -2(x - 3)(x + 1)(x - 5)			
$y = (x-2)^2(x+2)$			
y = (x + 4) ²			
$y - x^{2} - x^{2} - 6x$ = $x(x^{2} - x - 6)$ = $x(x - 3)(x + 2)$	If $y = 0$ $0 = x(x-3)(x+2)$ $x = 0$ $x = 3$		x = 0, 3, -2

3.1.3: The Root of All Knowledge

Date:

1. On a test, students were asked to determine the roots of $y = x^2 + 4x - 60$

Michael's solution	Susie's solution	Jaspal's solution
$y = x^2 + 4x - 60$	$y = x^2 + 4x - 60$	$y = x^2 + 4x - 60$
y = (x - 6)(x + 10)	y = (x+6)(x-10)	y = (x-6)(x+10)
0 = (x-6)(x+10)	0 = (x+6)(x-10)	0 = (x-6)(x+10)
x = 6 and $x = -10$	$x = 6 \ and \ x = -10$	$x = -6 \ and \ x = +10$

- a) Whose solution is correct?
- b) Explain what was done in the correct solution.
- c) Explain what was done incorrectly in the other two solutions.

2. a) Create a linear, quadratic, cubic and quartic function that has the x-intercept of x = 3.

c) Compare and contrast the functions.(i.e. What is the same and what is different about the functions?)

