Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 176-179 #1a, 3b, 4c, 7, 10 READ p. 181

p. 177 3. Determine the equation of each parabola.

y= a(x-r)(xs)
$y = \alpha(x-3)(x+2)$ $3 = \alpha(0-3)(0+2)$
$3 = \alpha(0-3)(0+2)$

$$3 = a(-6)$$

 $3 = -6a$
 $\frac{3}{6} = a$

1=3 15= 0

Time (s)	Height (m)
0	1.0
0.5	4.5
1.0	6.0
1.5	4.5
2.0	1.0

7. The height, at a given time, of a child above the ground when the child is on a trampoline is shown in the table. Determine an algebraic model for the data. Then use the model to predict when the child will reach a height of 3 m.

Vertex form
$$V(1,6) \rightarrow y = a(x-1)^{3} + 6$$

$$V(1,6) \rightarrow y = a(x-1)^{3$$

$$h(t) = -5(t-1)^{2} + 6$$

$$3 = -5(t-1)^{2} + 6$$

$$4 = -5(t-1)^{2} + 6$$

$$4 = -5(t-1)^{2} + 6$$

$$5 = -5(t-1)^{2} + 6$$

$$6 = -5(t-1)^{2} + 6$$

$$7 = -5(t-1)^{2} +$$

5:-2

Unit 3 - REVIEW 1

Recall: Form Standard form: $f(x) = ax^2 + bx + c$

 $f(x) = a(x-h)^2 + k$

Factored form: f(x) = a(x-r)(x-s)

Date: 24.17/19 Lesson 3_R1

1a) Write f(x) = (3x-4)(2x-1) in standard form. b) Write $f(x) = 8x^2 - 2x - 21$ in factored form.

$$=6x_{9}-11x+4$$

$$= 5x^{2} - (4x + 12x - 21)$$

$$= 2x(4x - 7) + 3(4x - 7)$$

$$= (4x - 7)(2x + 3)$$

$$= (4x - 7)(2x + 3)$$

$$= (2x + 3)(2x + 3)$$

2. Determine the zeros, the axis of symmetry, and the maximum or minimum value for

$$0 = (x+10)(x-4)$$

$$X = -10 \text{ or } x = 4$$
are the zeros

4. Can all quadratic equations be solved by factoring?

0=-(4t2-8t-165)

5. A ball is thrown from a cliff.

The height of the ball above the ground after it is thrown is modelled by the function $h(t) = -4t^2 + 8t + 192$, where h(t) is the height in metres, and t is the time in seconds.

- a) How high is the cliff?
- b) When will the ball be 27 m above the ground?

c) What is the maximum height that the ball reaches?

a) the cliff is 192 m (Lof +=0)

$$(2e+t=0)$$

$$0 = -(4t^2 - 8t - 165)$$

$$= -(4t^2 + 8t + 192)$$

$$= -(4t^2 + 2at - 3ot - 165)$$

$$= -(4t^2 + 165)$$

$$= -(4t^2 +$$

the ground at 7.5 seconds

- 2+11=0 on 2+-15=0 2t= 11 $=-8\pm\sqrt{2704}$ (inadmissible) $t = \frac{-8+52}{-8}$ m $t = \frac{-8-52}{-9}$ =-5.5 (inadmissible) =7.5: the ball will be 27 m above

6. The population of a town P(t) is modelled by the function $P(t) = 6t^2 - 75t + 2100$, where t is

time in years. NOTE: t = 0 represents the year 2000. According to the model,

a) When will the population reach 3000?