
Are there any questions from last day's assigned work you would like to see on the board?

Last day's work: p. 204 #1 - 9

4.9.6,8,5 Be prepared for tomorrow's Unit 3 Summative!!

- p. 204 3. You can choose whether you are provided the equation of a quadratic function in standard form, factored form, or vertex form. If you needed to know the information listed, which form would you choose and why?
 - a) the vertex
 - **b**) the *y*-intercept
 - c) the zeros
 - **d**) the axis of symmetry
 - e) the domain and range

p. 204 4. Determine the maximum area of a rectangular field that can be enclosed by 2400 m of fencing.

Let L and w represent the length and width respecvely in m.

$$A = l \omega$$

$$= l(1200-l)$$

$$= 1200 l - l^{2}$$

$$= -l^{2} + 1200 l$$

$$AgS: l = \frac{-b}{2a}$$

$$= \frac{-1200}{2(-1)}$$

$$= \frac{-600}{(1200 - 600)}$$

$$= \frac{-600}{2(-1)}$$

$$= \frac{-600}{2(-1)}$$

p. 204 5. Determine the equation of the inverse of $f(x) = 2(x-1)^2 - 3$.

$$x = 2(y-1)^{2} = 3$$

$$x + 3 = 2(y-1)^{2}$$

$$x + 3 = (y-1)^{2}$$

$$x + 3 = (y-1)^{2}$$

$$+ \sqrt{x+3} = y - 1$$

$$1 + \sqrt{x+3} = y - 1$$

$$1 + \sqrt{x+3} = y - 1$$

n 204

6. a) Simplify $(2 - \sqrt{8})(3 + \sqrt{2})$.

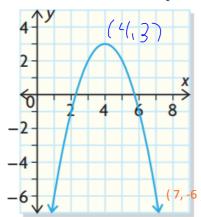
c) Explain why the answer to part (a) has fewer terms than the answer to part (b).

part (b).
b) Simplify
$$(3 + \sqrt{5})(5 - \sqrt{10})$$
.

$$= (5 - 750 + 555 - 550)$$

$$= (5 - 350 + 555 - 550)$$

$$= (5 - 350 + 555 - 550)$$


$$= (5 - 350 + 555 - 550)$$

p. 204 **7.** Calculate the value of k such that $kx^2 - 4x + k = 0$ has one root.

p. 204 8. Does the linear function g(x) = 6x - 5 intersect the quadratic function $f(x) = 2x^2 - 3x + 2$? How can you tell? If it does intersect, determine the point(s) of intersection.

g(x) = f(x)0=2x2-9x+7 $6x-5 = 2x^2 - 3x + 2$ $0 = 2x^{2} - 3x - 6x + 2 + 5$ $=(2\times-1)(x-1)$ $0=2x^2-9x+7$:X=== m X=1 b2-4ac $g(\frac{7}{2}) = 6(\frac{7}{2}) - 5$ = 2(-5) = (1) = 6x - 5 $= (1) \cdot 5$ $=(-9)^2-4(2)(7)$ = 81-56 - (3, 16) and (1,1) are = 251. 62-4ac≥0 Me Pols. : they intersect

p. 204 9. Determine the equation in standard form of the parabola shown below.

in standard form of the parabola shown below.

$$y = a(x - h)^{2} + k$$

$$y = a(x - 4)^{2} + 3$$

$$-6 - 3 = 99$$

$$-999$$

$$-999$$

$$-999$$

$$-999$$

$$-(x - 4)^{2} + 3$$

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) evaluate a power involving an integer exponent.
- b) simplify expressions involving integer exponents.

4.2 Working with Integer Exponents

Date: 0c+_3///9

Ex.1 Simplify.

a)
$$(5^3)(5^4)$$

= 5^{7}

b)
$$13^{6} \div 13^{2}$$

$$= 13^{6-3}$$

$$= 13^{4}$$

c)
$$(6^3)^4$$

$$= 6^{3 \times 4}$$

$$= 6^{12}$$

$$b^{m} \times b^{n} = b^{m+n}$$

$$b^{m} \times b^{n} = b^{m+n}$$
 $b^{m} + b^{n} = b^{m-n}$ $(b^{m})^{n} = b^{mn}$

$$(b^m)^n = b^{mn}$$

d)
$$34 \div 34$$

= 3^{4-4} or d) $34 \div 34$
= 3^{0} = $81 \div 81$
= 1

$$b^0 = 1$$

$$\therefore b^{-n} = \frac{1}{b^n}$$

See p. 217

Name	Symbol	Multiple of the Metre	Multiple as a Power of 10
terametre	Tm	1 000 000 000 000	10 ¹²
gigametre	Gm	1 000 000 000	10 ⁹
megametre	Mm	1 000 000	10 ⁶
kilometre	km	1 000	10 ³
hectometre	hm	100	10 ²
decametre	dam	10	10 ¹
metre	m	1	
decimetre	dm	0.1	
centimetre	cm	0.01	
millimetre	mm	0.001	
micrometre	μm	0.000 1	
nanometre	nm	0.000 01	
picometre	pm	0.000 001	
femtometre	fm	0.000 000 001	
attometre	am	0.000 000 000 001	

Em hm dam m dm cm mm

Kg hg dag g dg cg mg

Kl hal dal L dl cl ml

4.2 Working with Integer Exponents (Fall 2019)-f19p

October 21, 2019

Ex.2 Evaluate. Express your answers as simplified ationals.

a)
$$6^{-2}$$
 b) $(-4)^{-2}$ c) -4^{-2}

$$= \left(\frac{1}{6}\right)^{2} = \left(-\frac{1}{4}\right)^{2} = -\left(\frac{1}{4}\right)^{2}$$

$$= \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = -\left(\frac{1}{4}\right)^{2}$$

$$= \frac{1}{36} + \frac{1}{36} + \frac{1}{6} + \frac{1}{6} = -\frac{1}{6} + \frac{1}{6} = -\frac{1}{6} = -\frac{1}$$

d)
$$\left(\frac{3}{4}\right)^{-2}$$
e) $\frac{\left(5^{-4}\right)\left(5^{-2}\right)}{\left(5^{-3}\right)}$
f) $\frac{\left(8^{-4}\right)\left(2^{3}\right)}{\left(16^{-2}\right)}$

$$= \left(\frac{4}{3}\right)^{-2} \quad = \int_{-4^{-2}+3}^{-4^{-2}+3} \left(\frac{3}{4}\right)^{-2} \quad = \int_{-4^{-2}+3}^{-4^{-2}+3} \left(\frac{3}{4}\right)$$

Extra Practice (you try)

g)
$$2^{5} (-10)^{-2}$$
 h) $15^{-4} \times \left(\frac{15^{2}}{15^{8}}\right)^{-1}$ i) $\left(3^{0} + 3^{2}\right)^{-1}$ j) $\frac{4^{5}}{2^{-3}} \times \frac{2^{-1}}{4^{3}}$

Are there any questions from last day's assigned work you would like to see on the board?

Last day's work: p. 204 #1 - 9

Be prepared for tomorrow's Unit 3 Summative!!

Recall:
$$(-2)^4$$
 vs $|-2^4|$
= $(-2)(-2)(-2)(-3) = -(2)(3)(3)(3)$
= 16 = $-(6)$

READ p.221

Today's Assigned Practice includes:

p. 212 #1 - 10 (If any of these understandings are missing, get help ASAP!)

pp. 221-223 #(1 – 9)ace, 11b, 13acegi, 16ace