Date: 0c+.23/19

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) evaluate a power involving a rational exponent.
- b) simplify expressions involving rational exponents.

Are there any questions from last day's assigned work you would like to see on the board?

Last day's work: READ p.221

pp. 221-223 #(1-9)ace, 11b, 13acegi, 16ace

p.221 8. Determine the exponent that makes each equation true.

a)
$$9^x = 81$$

c)
$$(-5)^a = -125$$

b)
$$8^m = 256$$

c)
$$(-5)^a = -125$$

d) $-10^r = -100\ 000\ 000$

$$3_{\text{m}} = 3_{8}$$

$$(3_{3})_{\text{m}} = 3_{8}$$

$$M = \frac{8}{3}$$

p.222 9. Evaluate. Express answers in rational form.

(a) $(-4)^{-3}$ c) $-(5)^{-3}$ e) $(-6)^{-3}$ b) $(-4)^{-2}$ d) $-(5)^{-2}$ f) $-(6)^{-2}$

c)
$$-(5)^{-3}$$

e)
$$(-6)^{-3}$$

b)
$$(-4)^{-1}$$

d)
$$-(5)^{-3}$$

f)
$$-(6)^{-2}$$

p.222 11. Evaluate each expression for x = -2, y = 3, and n = -1.

b)
$$(x^2)^n (y^{-2n}) x^{-n}$$

p.222 6. Simplify, then evaluate each expression. Express answers in rational form.

a)
$$10(10^4(10^{-2}))$$

c)
$$\frac{6^{-5}}{(6^2)^{-2}}$$

e)
$$2^8 \times \left(\frac{2^{-5}}{2^6}\right)$$

b)
$$8'(8^2)(8^{-4})$$

d)
$$\frac{4^{-10}}{(4^{-4})}$$

5. Simplify, then evaluate each expression. Express answers in rational form.

a)
$$10(10^4(10^{-2}))$$
 c) $\frac{6^{-5}}{(6^2)^{-2}}$ e) $2^8 \times \left(\frac{2^{-5}}{2^6}\right)$

b) $8'(8^2)(8^{-4})$ d) $\frac{4^{-10}}{(4^{-4})^3}$ f) $13^{-5} \times \left(\frac{13^2}{13^8}\right)^{-1}$
 $= 8^{1+2+(-4)}$

$$=\frac{1}{X}$$

$$= 13^{5} \times (13^{-8})^{-1}$$

$$=1$$

p.222 7. Evaluate. Express answers in rational form.

a)
$$16^{-1} - 2^{-2}$$

d)
$$\left(\frac{1}{5}\right)^{-1} + \left(-\frac{1}{2}\right)^{-2}$$

b)
$$(-3)^{-1} + 4^0 - 6$$

e)
$$5^{-3} + 10^{-3} - 8(1000^{-1})$$

c)
$$\left(-\frac{2}{3}\right)^{-1} + \left(\frac{2}{5}\right)^{-1}$$

a)
$$16^{-1} - 2^{-2}$$
 d) $\left(\frac{1}{5}\right)^{-1} + \left(-\frac{1}{2}\right)^{-2}$
b) $(-3)^{-1} + 4^0 - 6^{-1}$ e) $5^{-3} + 10^{-3} - 8(1000^{-1})$
c) $\left(-\frac{2}{3}\right)^{-1} + \left(\frac{2}{5}\right)^{-1}$ f) $3^{-2} - 6^{-2} + \frac{3}{2}(-9)^{-1}$

$$=\frac{1}{16},-\frac{1}{2}$$

$$=\frac{1}{125}+\frac{1}{1000}-\frac{8}{1000}$$

$$= \frac{8}{1000} + \frac{1}{000} - \frac{8}{1000}$$

p.222 13. Evaluate using the laws of exponents.

a)
$$2^3 \times 4^{-2} \div 2^2$$

= $2^3 \times (2^3)^{-3} \div 2^3$

e)
$$\frac{2^5}{3^{-2}} \times \frac{3^{-1}}{2^4}$$

$$=\frac{1}{8}$$

p.222

16. Determine the exponent that makes each equation true.

a)
$$16^x = \frac{1}{16}$$

c)
$$2^x = 1$$

c)
$$2^x = 1$$
 e) $25^n = \frac{1}{625}$

4.3 Working with Rational Exponents

Date: 0c+. 23/19

Rational Exponents are exponents that are **fractions**, and are directly related to radicals.

In general:
$$4^{\frac{1}{2}} \text{ is the same as } \sqrt[3]{4}$$

$$= \sqrt[3]{8}$$

Ex.1 Write in radical form, then evaluate *without* using a calculator.

a)
$$36^{\frac{1}{2}}$$

b) $27^{-\frac{1}{3}}$

c) $8^{-\frac{2}{3}}$

d) $16^{\frac{3}{4}}$
 $= \sqrt{36}$
 $= \sqrt{36}$

Ex.2 Write each root as a power with a rational exponent.

a)
$$\sqrt[3]{27}$$
 b) $(\sqrt[4]{16})^3$ c) $(\sqrt[3]{81})^{-2}$

$$= \sqrt{1}^{\frac{1}{2}}$$

$$= \sqrt{6}^{\frac{1}{2}}$$

$$= \sqrt{1}^{\frac{1}{2}}$$

$$= \sqrt{3}^{\frac{1}{2}}$$

$$= \sqrt{3}^{\frac{1}{2}}$$

Ex.3 Write as a single power, *do not evaluate*.

a)
$$\frac{\sqrt{16}}{\sqrt{2}}$$

$$= \frac{\sqrt{3}}{\sqrt{4}}$$

$$= \sqrt{3} + \sqrt{3}$$

$$= \sqrt{3}$$

Worth remembering:

$$1^2 = 1$$
 $1^3 = 1$ $1^4 = 1$ $2^2 = 4$ $2^3 = 8$ $2^4 = 16$ $3^2 = 9$ $3^3 = 27$ $3^4 = 81$ $4^2 = 16$ $4^3 = 64$ $4^4 = 256$ $5^2 = 25$ $5^3 = 125$ $5^4 = 625$ $10^2 = 100$ $10^3 = 1000$ $10^4 = 10000$

Ex.4 Evaluate, without using a calculator.

a)
$$81^{\frac{1}{4}}$$
b) $(-8)^{\frac{1}{3}}$
c) $64^{-\frac{1}{2}}$

$$= \sqrt{81}$$

$$= \sqrt{81}$$

$$= \sqrt{3} - 8$$

$$= \sqrt{69^{\frac{1}{3}}}$$
d) $(-100\ 000)^{-\frac{1}{5}}$
e) $8^{\frac{2}{3}}$
f) $16^{-0.5}$

$$= \sqrt{69^{\frac{1}{3}}}$$

$$= \sqrt{69^{\frac{$$

Are there any questions from last day's assigned work you would like to see on the board?

Last day's work: **READ p.221**

pp. 221-223 #(1 – 9)ace, 11b, 13acegi, 16ace

READ p.228

Today's Assigned Practice includes:

pp. 229-230 #(1 - 6)ace, 8 - 11, 12ace, 14 [16]

Also:

The area of the square is 16 units

The volume of the cube is 64 units³.

