T 1 1 T	•	\sim 1	/ >	
	Anrning	$+ \alpha \alpha 1$	α	٠.
Today's I	Jeanning	Vivai		Ι.
			(~)	•

By the end of the class, I will be able to:

a) describe the characteristics of the graphs and equations of exponential functions.

Last day's work: pp. 235-237 #(1 – 2)ace, 3, (4 – 9)ace [14] Review p. 239

5ace 6ce 9c p. 236 5. Simplify. Express answers with positive exponents.

a)
$$(3xy^4)^2(2x^2y)^3$$
 (c) $\frac{(10x)^{-1}y^3}{15x^3y^{-3}}$ e) $\frac{p^{-5}(r^3)^2}{(p^2r)^2(p^{-1})^2}$
= $(3)^3(x)^3(y^4)^3(2)^3(x^3)^3(y^1)^3$ = $10^{-1}(x^2)y^3$ = $10^{-5}(x^3)y^{-3}$ = $10^{-5}(x^3)y^{$

c)
$$\frac{\sqrt{25m^{-12}}}{\sqrt{36m^{10}}}$$

$$= (25m)^{\frac{1}{2}}$$

$$= (25m)^{\frac$$

e)
$$\left(\frac{(32x^5)^{-2}}{(x^{-1})^{10}}\right)^{0.2}$$

$$= \left(\frac{32x^5}{(x^{-1})^{10}}\right)^{0.2}$$

$$= \left(\frac{32x^5}{(x^{-1})^$$

p. 237

8. Evaluate. Express answers in rational form with positive exponents.

a)
$$(\sqrt{10000x})^{\frac{3}{2}}$$
 for $x = 16$

$$= (100 \times \frac{1}{2})^{\frac{3}{2}}$$

$$= (100 \times \frac{1}{2})^{\frac{3}{$$

c)
$$(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$$
 for $a = 1, b = 2$

$$= (-a)^{3}(a^{2})^{3}(b)^{3}(5)(a^{4})^{3}(b)^{4}a$$

$$= (-a)^{3}(a^{2})^{3}(b)^{3}(b)^{3}(b)^{3}(b)^{3}(b)^{4}a$$

$$= (-a)^{3}(a^{2})^{3}(b)^{3}(b)^{3}(b)^{3}(b)^{3}(b)^{3}(b)^{4}a$$

$$= (-a)^{3}(a^{2})^{3}(b)^{3}(b)^{3}(b)^{3}(b)^{3}(b)^{3}(b)^{4}a$$

$$= (-a)^{3}(a^{2})^{3}(b)^{3}$$

p. 237 9. Simplify. Express answers in rational form with positive exponents.

c)
$$\left(\frac{\sqrt{64a^{12}}}{(a^{1.5})^{-6}}\right)^{\frac{2}{3}}$$

$$= \left(\frac{\left(6\sqrt{\alpha}\right)^{\frac{1}{2}}}{\left(\alpha^{\frac{2}{3}}\right)^{-\frac{1}{6}}}\right)^{\frac{2}{3}}$$

$$= \left(\frac{\left(6\sqrt{\alpha}\right)^{\frac{1}{2}}}{\left(\alpha^{\frac{2}{3}}\right)^{-\frac{1}{6}}}\right)^{\frac{2}{3}}$$

$$= \left(\frac{\left(6\sqrt{\alpha}\right)^{\frac{1}{2}}}{\left(\alpha^{\frac{2}{3}}\right)^{-\frac{1}{6}}}\right)^{\frac{2}{3}}$$

$$7 = (64a^{12})^{\frac{1}{3}}$$

$$= (64a^{12})^{\frac{3}{3}} - 4 - 2$$

$$= 64^{\frac{3}{3}}(a^{12})^{\frac{1}{3}}$$

$$= 64^{\frac{3}{3}}(a^{12})^{\frac{1}{3}}$$

$$= 64^{\frac{3}{3}}(a^{12})^{\frac{1}{3}}$$

$$= 44^{\frac{10}{3}}$$

$$= 44^{\frac{10}{3}}$$

U-50+10

Exploring Properties of Exponential Functions 4.5

p. 240 Invesgate – students complete A – E individually (or in pairs).

A.	g	(x)	=x	
	0	/		

A. g(.	$x_j - x$
х	y
-3	-3
-2	-2 ~
-1	-1
0	0 ′
1	1
2	2
3	3
4	4
Г	Г

$$h(x) = x^2$$

11(2) -		F
x	y	
-3	9 -	ر
-2	4 -	Z
-1	1 :	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0	0 ′	20
1	1	2
2	4	
3	9	
4	16	
5	25	

 $k(x) = 2^x$

x	y
-3	1/8
-2	1/4 =
-1	1/2 <
0	1 :
1	2 ′
2	4
3	8
4	16
5	32

- B. $g(x) \rightarrow$ first differences are equal
 - $h(x) \rightarrow$ second differences are equal
 - $k(x) \rightarrow$ ratio of successive y-values are equal

use first differences to eliminate translation?

C.

 $D = \{ x \in \mathbb{R} \}$

$$R = \{ v \in \mathbb{R} \}$$

$$D = \{ x \in \mathbb{R} \}$$

$$R = \{ v \in \mathbb{R} \mid v \ge 0 \}$$

$$D = \{ x \in \mathbb{R} \}$$

$$R = \{ y \in \mathbb{R} \mid y > 0 \}$$

E. $g(x) \rightarrow$ as independent variable (x) increases,

the dependent variable (y) also increases at a consistent rate

 $h(x) \rightarrow$ as independent variable (x) increases,

the dependent variable (y) decreases until x = 0 and then increases

 $k(x) \rightarrow$ as independent variable (x) increases,

the dependent variable (y) also increases, slowly at first and then quickly.

Show with DESMOS?

C https://www.desmos.com/calculator/dcbvlufgmb

https://www.desmos.com/calculator/snogpkesaw

https://www.desmos.com/calculator/yabmbc4wcd

$$y = x$$
 $y = x^2$ $y = 2^x$ $y = 2^x$

Reminder:

Asymptotes MUST always be drawn and labelled.

G. For all 3 functions, D = $\{x \in \mathbb{R}\}$ and R = $\{y \in \mathbb{R} \mid y > 0\}$.

The y-intercept = 1, there are no x-intercepts,

and there is a Horizontal Asymptote [H.A.] at y = 0 (x-axis).

H. $y = 10^x$ increases fastest, and $y = 2^x$ has the slowest rate of increase.

- J. All properties remain the same as G.
- K. As the values of x increase the graphs with fractional bases decrease (decay).

Summary: Properties of $y = b^x$

- b>0 $\downarrow b \neq 1$
- *y*-int = 1
- H.A.: y = 0 (x-axis) [Horizontal Asymptote]
- D = $\{x \in \mathbb{R}\}$
- $R = \{y \in \mathbb{R} \mid y > 0\}$
- Increasing when b > 1 (growth)
- The greater the value of b, the faster the growth
- Decreasing when 0 < b < 1 (decay)
- Equal ratios of successive *y*-values

For tomorrow, think about the general form of $y = a(b^x) + c$ and how the values of a and c relate to the graphs we drew today.

Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 235-237 #(1 – 2)ace, 3, (4 – 9)ace [14] Review p. 239

Today's Homework Practice includes:

pp. 240-241 A - P **READ** p. 242 p. 243 #1, 2