Are there any questions from last day's assigned work you would like to see on the board?

pp. 330-332 # 1 – 3, 5 – 7 (Use next screen?)
$$2, 3, 5 = 0$$

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) Identify a specific type of periodic function called a sinusoidal function.
- b) State the equation of the axis, given a sinusoidal curve.
- c) State the period of a sinusoidal curve.
- d) State the max/min value for the peaks & troughs.

- p. 330
- **5.** The graph shows the amount of water used by an automatic dishwasher as a function of time.

water for 1 Cycle = 30 L

- a) Why does the operation of the dishwasher model a periodic function?
- b) What is the period? What does one complete cycle mean?
- c) Extend the graph for one more complete cycle.
- d) How much water is used if the dishwasher runs through eight complete cycles?
- e) For part (d), state the domain and range of the function.
- -> 8 x 30 = 240 L
- **6.** This is a graph of Nali's height above the ground in terms of time while riding a Ferris wheel.

- a) What is the period of this function?
- b) What does the period represent?
- c) What is the diameter of the Ferris wheel? How do you know?
- d) Approximately how high above the ground is Nali at 10 s?
- e) At what times is Nali at the top of the wheel?
- f) When is Nali 4 m above the ground?

This is NOT on the handout, but needs to be understood.

Defining an angle in "standard position". Explain: $0^{\circ} \le \theta \le 360^{\circ}$

 θ = Principal Angle

 $\theta = x$ degrees measured *counter*-clockwise

[or $0^{\circ} \leq \mathcal{X} \leq 360^{\circ}$]

Let's use a radius of 1 unit for our circle.

$$\sin x = \frac{opp}{1}$$

 $\sin x = opp$ (height of the opposite side)

MCF 3MI

6.3 Investigating the Sine Function, $y = \sin x$

Date: <u>NOV</u>, 20//9

Ex.1: Complete the following table of values. (Round to 2 decimal places)

											300°		
$\sin(x)$	0	0.5	0.866	1	0.87	0.5	0	-0. 5	-0.87	-1	-0.87	- 0.5	0
x	-360°	-330°	-300°	-270°	-240°	-210°	-180°	-150°	-120°	-90°	-60°	-30°	
$\sin(x)$	0	0.5	0.87	.	6.87	0.5	0	-0,5	- 0.87	-/	- 0.87	-0.5	

Sketch the curve using the table of values above.

The **Sine Function**, $y = \sin x$, has the following properties: $y = \sin x$

- it has an amplitude of _____
- * always positive
- it has a period of ________° The equation
- of the axis is defined by y =

- the domain is D = ∑√ ⊆ ∏ ≷
- the range is $R = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$
- key points: $(0^{\circ}, \underline{\hspace{1cm}}), (90^{\circ}, \underline{\hspace{1cm}}), (180^{\circ}, \underline{\hspace{1cm}}), (270^{\circ}, \underline{\hspace{1cm}}), (360^{\circ}, \underline{\hspace{1cm}})$

Another Sinusoidal Function, $y = \cos x$

Ex.2: Complete the following table of values. (Round to 2 decimal places)

x	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°	
cos(x)														
x	-360°	-330°	-300°	-270°	-240°	-210°	-180°	-150°	-120°	-90°	-60°	-30°		
$\overline{\cos(x)}$														

Sketch the curve using the table of values above.

The *Cosine Function*, $y = \cos x$, has the following properties: $y = \cos x$

- it has an amplitude of
- it has a period of 360°
- its axis is defined by $y = \bigcirc$
- the domain is D = $\frac{\xi \times \epsilon \cdot R \cdot \xi}{\xi \cdot \xi \cdot R \cdot \xi}$ the range is R = $\frac{\xi \cdot \xi \cdot R \cdot \xi}{\xi \cdot \xi \cdot R \cdot \xi}$
- key points: $(0^{\circ}, \underline{\hspace{0.1cm}}), (90^{\circ}, \underline{\hspace{0.1cm}}), (180^{\circ}, \underline{\hspace{0.1cm}}), (270^{\circ}, \underline{\hspace{0.1cm}}), (360^{\circ}, \underline{\hspace{0.1cm}})$

Today's Homework: Do p. 339 # 1 (together in class) pp. 339-343 # 2 - 4, 6, 9, 12

Today's Homework:

Do p. 339 # 1 (together in class) **AND READ** pp. 337-339 **AND pp. 339-343** # 2 – 4, 6, 9, 12

p. 339 1. Which graphs are sinusoidal functions? Justify your decision.

Not Sinusoidal

Not Sinusoidal