Are there any Homework Questions you would like to see on the board?

pp. 339-343 #2-4, 6, 9, 12 2dToday's Learning Goal(s): 4acdBy the end of the class, I will be able to:

a) relate details of sinusoidal phenomena to their graphs.

BE READY for SWYK 6.1 Tomorrow!

p. 339

2. Nolan is jumping on a trampoline. The graph shows how high his feet are above the ground.

- How long does it take for Nolan's jumping to become periodic? What is happening during these first few seconds?
- What is the period of the curve? What does *period* mean in this context?
- Write an equation for the axis of the periodic portion of the curve.
- d) What is the amplitude of the sinusoidal portion of the curve?

 $\sqrt{2}a = 1.75$ What does amplitude mean in this context? S Nolan is 1.75 m above the half way point of his jumping height

3. Alicia was swinging back and forth in front of a motion detector. Her

- distance from the motion detector in terms of time can be modelled by the graph shown.

a=5 (5m)

Also, when at rest, she is 9m from the Senson : Swing is a Hacked 9 m from the Genson

p. 340 **4.** An oscilloscope hooked up to an AC (alternating current) circuit shows a sine curve on its display:

p. 341

6. Sketch the sinusoidal graphs that satisfy the given properties.

	Period (s)	Amplitude (m)	Equation of the Axis	Number of Cycles	
a)	4	3	<i>y</i> = 5	2	
b)	20	6	<i>y</i> = 4	3	
c)	80	5	<i>y</i> = −2	2	

a

p. 3439. The graph shows John's height above the ground as a function of time as he rides a Ferris wheel.

a) What is the diameter of the Ferris wheel?

97-9=90W

b) What is John's initial height above the ground? $| \lambda |$

c) At what height did John board the Ferris wheel? 12 m

d) How high above the ground is the axle on the wheel?

Eggh & the axis : y=12 (m 12 m above)

Aside:
$$y = \frac{hi + 10}{2}$$

$$-\frac{22}{3}$$

p. 343 Enrichment

12. a) Create a table of values for the function defined by $f(\theta) = \tan \theta$, where $0^{\circ} \le \theta \le 360^{\circ}$.

Rotatio	n (θ)	0°	30°	60°	90°	120°	• • •	330°	360°
an heta		0							

- **b**) Plot these points, and draw a curve.
- c) Is this a sinusoidal function? Explain.
- d) Determine the period, the equation of the axis, and the amplitude of the function.

MCF 3MI

6.4 Comparing Sinusoidal Functions

Ex.1: Complete the table.

Period = 40 s

Equation of the Axis: y=7

Amplitude = 6

Circumference of the Ferris Wheel = 37.70 m

Ferris Wheel B

Equation of the Axis: y=4

Amplitude = 3

Circumference of the Ferris Wheel = 18.85 m

$$(-2177)$$

= 217(3)
= (8 %)

- Ex. 2: How do we interpret the following information about the Ferris wheel?
 - a) period for Ferris Wheel A, Ferris Wheel B the time for 1 complete rotation
 - b) equation of the axis $\frac{\max + \min}{2}$
 - c) amplitude for each Ferris Wheel

$$a = max - eq'n ext{ of the axis} ext{OR} ext{} ext{}$$

Ex. 3: Calculate the speed at which each wheel is travelling.

Speed_A=
$$\frac{37.70}{40} \frac{m}{s}$$
 Speed_B= $\frac{18.85 m}{40.05}$ $s = \frac{a}{t} = \frac{carangerence}{period}$
 $= 0.942$ $= 0.471$ 0.94 m/s 0.47 m/s
 $= 0.94 m/s$

BE READY FOR SWYK TOMORROW

Today's Homework:

pp. 348-350 # 1 – 3, 7 **AND** READ pp. 355-356 **AND pp.** 357-358 # 1 – 4, 6 – 8