Are there any Homework Questions you would like to see on the board?

(Correct p. 460 # 6 from yesterday)

Today's Learning Goal(s):

By the end of the class, I will be able to:

a) Calculate the amount of an investment for a variety of compounding periods.

MCF 3MI

8.2 Compound Interest: Determining Future Value

$$A = P(1+i)^n$$
 or $FV = PV(1+i)^n$

Ex. 1: Compare investing \$1400 for 5 years in the following compound-interest accounts.

OPTION A: 12%/a compounded annually

OPTION B: 12%/a compounded semi-annually

OPTION C: 12%/a compounded quarterly

OPTION A:

A=?
P=1400

$$i = \frac{0.12}{1}$$

 $= \frac{0.12}{0.12}$
 $n = 5 \times 1$
 $= 5$

N A:

$$A = 1400 \left(1 + \frac{0.12}{1}\right)^{5}$$

$$A = ?$$

$$P = 1400$$

$$A = 1400 \left(1 + 0.12\right)^{5}$$

$$A = 1400 \left(1 + 0.12\right)^{10}$$

$$A = 1400 \left(1 + 0.12\right)^{5}$$

$$A = 1400 \left(1 + 0.06\right)^{10}$$

$$A = 1400 \left(1 +$$

NOTE:

The amount of an investment increases as the number of compounding periods increases

Ex. 2: Compare investing \$825 for 4 years: 7 = 7.5%a) $7\frac{1}{2}\%/a$ compounded monthly $7\frac{1}{2}\%/a$ simple interest 7.5%

- b) $7\frac{1}{2}$ %/a simple interest.
- c) Determine the difference between these investments at the end of the 4 th year.

a) $A = \rho(1+i)\eta$

b) I=Prt c) Difference = compounded monthly - simple

 $A = 825 \left(1 + \frac{0.075}{12}\right)^{48} I = 7 = 825 (0.075)(4) = 40.09

$$P=825 = 1112.594 P=825 = 247.5$$

$$i = \frac{0.075}{12} = 41112.59 \Gamma = 0.075 = 247.50$$

$$1 = 47 = 47.50$$

$$1 = 47 = 47.50$$

$$1 = 47 = 47.50$$

$$1 = 47 = 47.50$$

Revisit Today's Learning Goals

Homework: pp. 468-469 #1-3, 5, 8, 12

Revisit Today's Learning Goals

Today's Homework: