MCF 3MI

8.R Unit 8 Review

VS.

Simple Interest

$$A = P + I$$
where $I = \Pr t$

$$A = P + I$$

$$P = P + P$$

$$FV = PV(1 + i)^{n}$$

$$P$$
=Principal (\$Value) $A = P(1+i)$

P=Principal (\$Value)
$$A = P(1+rt)$$

r=rate of interest (as a **decimal**)

t=time (in **years**) $P = \frac{A}{(1+rt)}$

Compound Interest

$$\frac{A}{\left(1+i\right)^n} = P$$

A=Amount (\$Value) at the end

i=interest per compounding period *n*=number of **compounding periods**

$$A = \frac{R\left[\left(1+i\right)^n - 1\right]}{i}$$

A is the amount or future value $A = \frac{R \left[\left(1 + i \right)^n - 1 \right]}{i}$ R is the deposit or payment
i is the interest rate per compounding period

n is the total number of deposits

Know the compounding period names/times per year:

```
annually
  semi-annually 2
     quarterly
        monthly 12
          weekly 52
             daily 365
```

Are there any Homework Questions you would like to see on the board?

p. 522 5. An investment of \$1500 grows to \$3312.06 in 10 years. What is the interest rate of the investment if interest is compounded quarterly?

$$A = 3312.06$$

$$A = P(1+i)^{n}$$

$$A = 3312.06$$

$$33/2.06 = (500(1+i)^{n})$$

$$A = 1500$$

$$A = 1500$$

$$A = 1500 = (1+i)^{n}$$

$$A = 1500$$

$$A = 1500 = (1+i)^{n}$$

$$A = 150$$

p. 522 **6.** Kadie invested \$3000 at 6%/a compounded quarterly. How long will it take for the investment to be worth \$8500?

A=8500

A=P((+i))

$$SD=3000(1+\frac{0.06}{4})$$
 $SD=3000(1+\frac{0.06}{4})$
 $SD=3000$
 $SD=30$

p. 522 **8.** At the end of every 6 months, Parvati deposited \$200 into a savings account that paid 3.5%/a compounded semi-annually. She made the first deposit when her son was 6 months old and the last deposit on his 18th birthday. The money remained in the account until he turned 21. How much did Parvati's son receive?

$$R = 200$$
 $i = 0.035 = 0.0175$
 $R = 18x2$
 $= 36$

p. 523 11. Raymond has \$53 400 in his savings account, and he withdraws \$250 at the end of every 3 months. If the account earns 5%/a compounded quarterly, what will his bank balance be at the end of 4 years?

$A = \mathbb{R}((1+i)^{n}-1)$
$= 200((1+0.0175)^{36})$
0.0175
÷ 99 13. 225
= \$9913.23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$n = \frac{3}{2}$

A= P=250		TVM Calculator	Advanced
R = 250	Mode	● End ○ Beginning	
(- 4	Present Value	53,400	PV
= 0.0125	Payments	-250	PMT
	Future Value	-60,744.31	FV
N = 4x4 - 16	Annual Rate (%)	5	Rate
= (6	Periods	16	Periods
	Compounding	Quarterly ▼	