1.2 Absolute Value Notation and Interval Notation

Math Learning Target:

"I can graph transformations of the absolute value function, and state several properties. I can express a solution for an equation and inequality in set notation, absolute value notation and interval notation. I can graph all solutions for equations and inequalities on the number line."

absolute value

The <u>absolute value</u> of a number x on an axis is its distance to the axis' origin. The notation used is |x|. This axis is traditionally referred to as the **number line**.

Since each element x on an axis has one, and only one, absolute value, the absolute value of x can be described as a function.

Important Properties: (Characteristics)

Examples

- 2. Graph on the real number line: $\{x \in R \mid |x| < 4\}$

- 3. Express using absolute value notation: $\{x \in \mathbb{R} \mid |x| = 6\}$ -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
- 4. Without a table of values, graph:

5. Express in interval notation:

a)
$$\{x \in R \mid x > 6\}$$
 \longleftrightarrow \mathbb{R} $\chi \in (6, \infty)$

$$\chi \in (6, \infty)$$

b)
$$\{x \in R \mid -3 \le x \le 5\}$$
 $\sim \in [-3, 5]$

$$x \in [-3,5]$$

c)
$$\{x \in R \mid |x| < 2\}$$
 \longleftrightarrow \mathbb{R} $\times \in (-2, 2)$

$$x \in (-2,2)$$

If #5 was difficult, study video lessons 1, 2 and 3:

http://courseware.cemc.uwaterloo.ca/8/assignments/75/0

On any assessment in this course, you must be prepared to present your solution in set notation, interval notation and absolute value notation.

And finally... what is $\sqrt{x^2}$ simplified? \clubsuit Hint: Make a Table for $y = \sqrt{x^2}$

Today's entertainment.

pg. 16 #2, 3, 4*, 5, 7. Final Answer Corrections:

 $\frac{1}{-5}$ $\frac{1}{-4}$ $\frac{1}{-3}$ $\frac{1}{-2}$ $\frac{1}{-1}$ $\frac{1}{0}$ $\frac{1}{0}$

Now do these two quick quizzes: http://courseware.cemc.uwaterloo.ca/8/assignments/75/3 http://courseware.cemc.uwaterloo.ca/8/assignments/75/4 pg. 11 / O < / () 4

- 10. Consider the relation between x and y that consists of all points (x, y) such that the distance from (x, y) to the origin is 5.
 - a) Is (4, 3) in the relation? Explain.
 - b) Is (1, 5) in the relation? Explain.
 - c) Is the relation a function? Explain.

$$(S = \chi^{2} + y^{2})$$
 $RS = S^{2}$
 $-(4)^{2} + (3)^{2} = 25$
 $= 16 + 9$
 $= 27$: $(S = RS)$
: (43) is in the relation.

11. The table below lists all the ordered pairs that belong to the function g(x).

х	0	1	2	3	4	5
g(x)	3	4	7	12	19	28

$$\mathcal{J}(x) = x^2 + 3$$

- a) Determine an equation for g(x).
- b) Does g(3) g(2) = g(3 2)? Explain.

Extending

14. Consider the relations $x^2 + y^2 = 25$ and $y = \sqrt{25 - x^2}$. Draw the graphs of these relations, and determine whether each relation is a function. State the domain and range of each relation.

