(

1.3 Properties of Graphs of Functions

Math Learning Target:

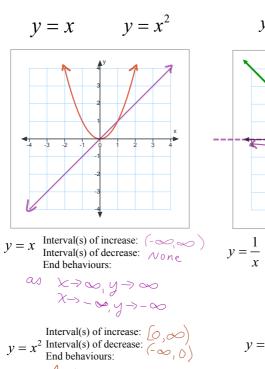
"I can compare properties between parent functions, and within a parent function's family."

A transformation is a geometric operation, such as a translation, reflection and compression.

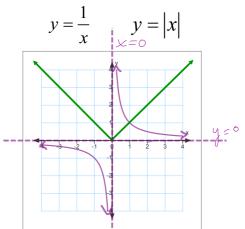
Each transformation is performed on a parent relation. There are many parent relations. A **parent function** belongs to the set of parent relations and is the simplest function in a family of functions.

For example, the family of quadratic functions are all constructed from $y = x^2$.

Here are the *seven* parent functions that will be used often:



As $\times \to \infty$, $y \to \infty$ $\times \to -\infty$, $y \to \infty$



$$y = \frac{1}{x}$$
 Interval(s) of increase: $(0, 0)$ Interval(s) of decrease: $(0, 0)$ U(0, ∞)

End behaviours:
$$A_{S} \times (0, 0) \times (0, \infty)$$

$$\times (0, \infty)$$
Interval(s) of increase: $(0, \infty)$

$$y = |x|$$
 Interval(s) of increase: $\begin{bmatrix} 0 & \infty \\ \infty & 0 \end{bmatrix}$
End behaviours: $\begin{bmatrix} \infty & \infty \\ \infty & 0 \end{bmatrix}$

* Recall: Did you include "0" in one interval OR the other.

$$y = \sqrt{x} \qquad y = b^{x} \underbrace{\text{i.e. } b = 2}_{y = 2^{x}}$$

Interval(s) of increase: $0 \approx 0$ $y = \sqrt{x} \quad \text{Interval(s) of decrease: } \text{Interval(s) of decrease: }$

Interval(s) of increase: $y = 2^x$ Interval(s) of decrease: $y = 2^x$ End behaviours:

As $\times \to \infty$, $y \to \infty$ $\times \to -\infty$, $y \to 0$

 $y = \sin(x)$

 $y = \sin(x)$ End behaviours:

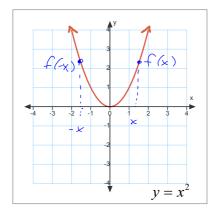
as x > ±0, y oscillates between y=1 and y=-1

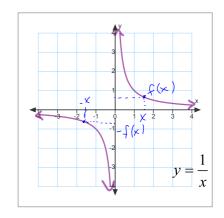
CHALLENGE! Can you determine expressions for the intervals of increase and intervals of decrease?

"Symmetry"

A function is **odd** when f(-x) = -f(x)

A function is **even** when f(-x) = f(x)





Graphically, a function is even when

Graphically, a function is odd when

it is symmetric about \Rightarrow it has rotational symmetry about the origin. The y-axis (only) \Rightarrow it is symmetric about both \Rightarrow it is symmetric about both \Rightarrow it is symmetric about both \Rightarrow in the x-axis, then y-axis in the x-axis, then y-axis $f(x) = x^2$

$$f(x) = x$$

$$(ms; lor f(-x))$$

$$= (-x)^{3}$$

$$= (-1)^{3}(x)^{3}$$

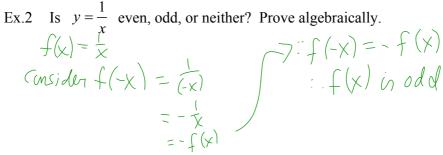
$$= 1x^{3}$$

$$= x^{3}$$

$$\therefore f(-x) = f(x)$$

$$\therefore f(x) \text{ is even}$$

$$\begin{cases} \text{conclusion NEEDED.} \end{cases}$$



Do: pg. 23 #3*, 4ad, 5**, 6, 7, 8, 10***, 15

* Error in answer: the function can be derived from any y=bx, for any valid "b"),

** The instructions are poor. Simply apply what was learned today in the lesson.

***In #10a, in the <u>instructions</u> for the question change $(-\infty, -2)$ to $(-\infty, 2)$ positive 2

YES, you have permission to write in the textbook to make this change!