- 1.2 pg. 16 #2, 3, 4*, 5, 7
- 1.3 pg. 23 #3*, 4ad, 5, 7, 8, 10, 15

 See next page for

 Mr. Kennedy's full solution to p.23 #5f.
- 1.4 Worksheet #1-7 6,5

Today's Work: pg. 60 #1 to 8, 9bde

Correction: #3 the range should be $\{y \in \Re \mid y \ge -1\}$

p. 23 **5.** For each function, determine f(-x) and -f(-x) and compare it with f(x). Use this to decide whether each function is even, odd, or neither.

f)
$$f(x) = |2x + 3|$$

p23
$$\neq 5f$$
) Given: $f(x)=|2x+3|$
It is important to note that $|2(-x)+3|$ is not always $2x+3...$

Notice that it is the line y= x as long as x ≥ 0 and it is the line y=-x as long as x < 0 5/1

Thux, |2x+3| is 2x+3 for x2-1.5 and |2x+3| is -(2x+3) otherwise. We examine its symmetry via two cases...

$$f(x) = |2x+3| = 2x+3$$

$$f(x) = |2x+3| = 2x+3$$

$$= -2x+3$$

$$= -2x+3$$

$$+ f(x) \text{ and }$$

$$+ -f(x)$$
Hence, for $x \ge -1.5$ it is neither even nor odd

$$f(x) = |2x+3| = -(2x+3)$$

$$Consider f(-x) = -[2(-x)+3]$$

$$= -(-2x+3)$$

$$= 2x-3$$

$$+ f(x) and$$

$$+ -f(x)$$
Hence, for $x < -1.5$ it is
notified even nor odd

Hence, it is neither

p. 16 **4.** Graph on a number line.

- a) |x| < 8 b) $|x| \ge 16$ c) $|x| \le -4$ d) |x| > -7

pg. 16 #2, 3, 4*, 5, 7. *Final Answer Corrections:

4c: 4-6-5-4-3-2-1-0-1-2-3-4-5-6 i.e. no solution (so no "shading")

4d: \leftarrow i.e. entire number line (entire line is "shaded")

5. For each function, determine f(-x) and -f(-x) and compare it with f(x). Use this to decide whether each function is even, odd, or neither.

a)
$$f(x) = x^2 - 4$$

d)
$$f(x) = 2x^3 + x$$

e) $f(x) = 2x^2 - x$

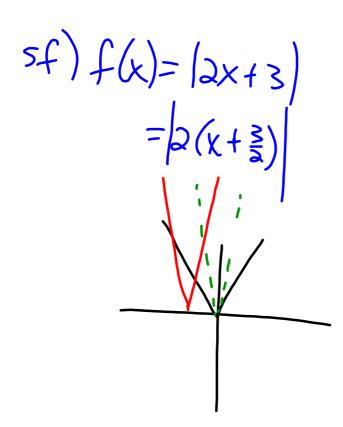
a)
$$f(x) = x^2 - 4$$

b) $f(x) = \sin x + x$

e)
$$f(x) = 2x^2 - x$$

c)
$$f(x) = \frac{1}{x} - x$$

f)
$$f(x) = |2x + 3|$$



- p. 23 10. a) f(x) is a quadratic function. The graph of f(x) decreases on the interval $(-\infty, 2)$ and increases on the interval $(2, \infty)$. It has a y-intercept at (0, 4). What is a possible equation for f(x)?
 - b) Is there only one quadratic function, f(x), that has the characteristics given in part a)?
 - c) If f(x) is an absolute value function that has the characteristics given in part a), is there only one such function? Explain.

 $y = (x-2)^{2} \text{ (}-\infty,-2) \text{ to (}-\infty,2]$ positive 2 $y = (x-2)^{2} \text{ positive 2}$ $y = (x-2)^{2} \text{ positive 2}$ $y = (x-2)^{2} \text{ positive 2}$ $y = (x-2)^{2} \text{ to (}-\infty,2]$ $y = (x-2)^{2} \text{ to (}-\infty,2]$ y = (x-2

February 10, 2020

p. 23 **15.** Explain why it is not necessary to have $h(x) = \cos(x)$ defined as a parent function.

Explanation: $\cos x$ is a horizontal translation of $\sin x$.

LESSON 1.4 PRACTICE

- State the parent function and describe the transformations: $f(x) = \sqrt{4x-3}$
- 2. Using the parent function y = f(x) state the new function under a horizontal stretch factor of 3, and a reflection in the y-axis
- 3. Multiple Choice. The point (3, 1) belongs to the function y = f(x). Which of the following shows the correct order of transforming (3, 1) using y = -3f(4x-4) + 5?

a)
$$(3, 1) \rightarrow (-9, 4) \rightarrow (-8, 9)$$

b)
$$(3, 1) \rightarrow \left(\frac{3}{4}, -3\right) \rightarrow \left(\frac{-1}{4}, 2\right)$$

c)
$$(3, 1) \rightarrow \left(\frac{3}{4}, -3\right) \rightarrow \left(\frac{7}{4}, 2\right)$$

d)
$$(3, 1) \rightarrow (12, -9) \rightarrow (13, -4)$$

3. Multiple Choice. The point (3, 1) belongs to the function y = f(x). Which of the following shows the correct order of transforming (3, 1) using y = -3f(4x-4) + 5?

a)
$$(3, 1) \rightarrow (-9, 4) \rightarrow (-8, 9)$$

$$= -3f(4(x-1))+5$$

b)
$$(3, 1) \rightarrow \left(\frac{3}{4}, -3\right) \xrightarrow{\checkmark} \left(\frac{-1}{4}, 2\right)$$

$$(c)(3,1) \rightarrow \left(\frac{3}{4},-3\right) \stackrel{\checkmark}{\rightarrow} \left(\frac{7}{4},2\right) \stackrel{\checkmark}{\rightarrow}$$

(c)
$$(3, 1) \rightarrow \left(\frac{3}{4}, -3\right) \stackrel{\checkmark}{\rightarrow} \left(\frac{7}{4}, 2\right) \stackrel{\checkmark}{\rightarrow} \left(\frac{1}{4}, 2\right) \stackrel{?}{\rightarrow} \left(\frac{1}$$

d)
$$(3, 1) \rightarrow (12, -9) \rightarrow (13, -4)$$

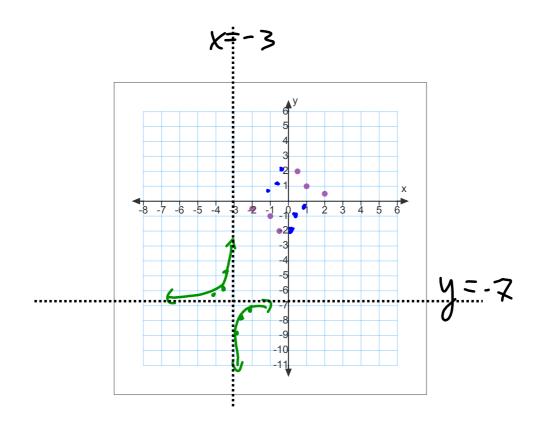
- 4. Determine the equation based on the described transformations:
 - a) The graph of y = |x| is translated up 3 units.
 - b) The graph of $y = \sin x$ is reflected in the *y*-axis.
 - c) The graph of y = x is stretched vertically by a factor of 7, compressed horizontally by a factor of $\frac{1}{4}$, and translated up 5 units.
 - d) The graph of $y = \frac{1}{x}$ is reflected in the *x*-axis.
 - e) The graph of $y = x^2$ is stretched vertically by a factor of 2 and translated up 4 units.

f) The graph of $y = \sqrt{x}$ is translated left 4 units and up 12 units.

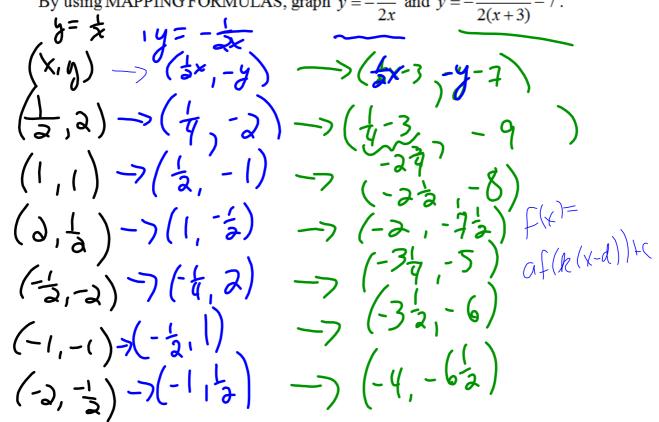
5. Graph $y = \frac{1}{x}$, by including all key points.

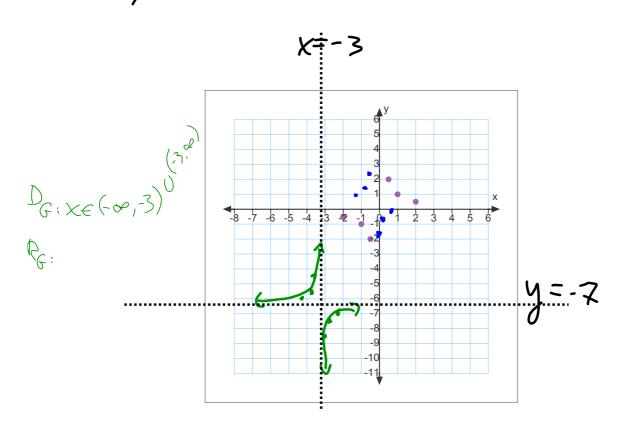
By using MAPPING FORMULAS, graph $y = -\frac{1}{2x}$ and $y = -\frac{1}{2(x+3)} - 7$.





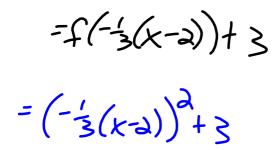
5. Graph $y = \frac{1}{x}$, by including all key points. $(x, y) \Rightarrow (\frac{1}{x} \times 10^{-3}) \Rightarrow (\frac$

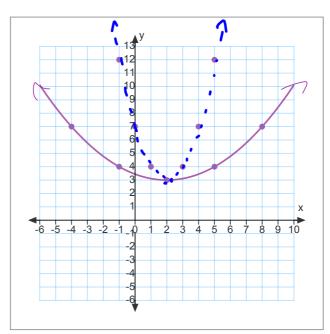




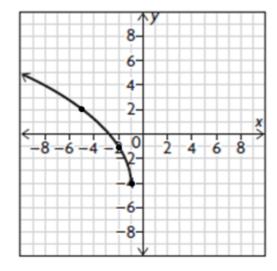
6. Graph $f(x) = x^2$, by including all key points. Without using a mapping formula graph $y = f(-\frac{1}{3}x + \frac{2}{3}) + 3$.

$$y = \left(\frac{-1}{3}(x-2)\right)^2 + 3$$



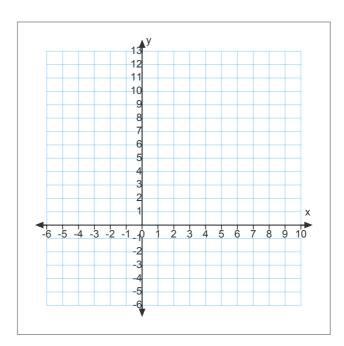


7. Describe the transformations applied, in order, to $f(x) = \sqrt{x}$, to create the graph below: Done on next screen.



6. Graph $f(x) = x^2$, by including all key points. Without using a mapping formula graph

 $y = f(-\frac{1}{3}x + \frac{2}{3}) + 3.$



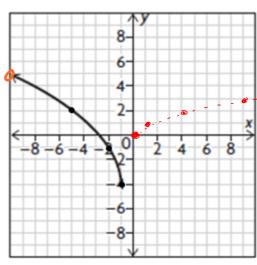
7. Describe the transformations applied, in order, to $f(x) = \sqrt{x}$, to create the graph below:

parent

function: y= JX

ref! in yr-axis

d=-1 c=-4



reflection in
the y-axis
VS. by a factor
3
h.t. 1 unit left
U.f. 4 units down

Orden:

: N=3 (x+1) -4