Are there any questions from last day's assigned work you would like to see on the board?

Last day's assigned work: **READ pp. 66-67**

pp. 68–69 # 1 – 10 p. 70 # 1 – 4, 5abc, 6

Return and Correct SWYK 1.2?

p. 68

- **1.** The data in the table show the average mass of a boy as he grows between the ages of 1 and 12. State the following:
 - a) domain
 - b) range
 - c) whether the relation is a function

	Age (years)	1	2	3	4	5	6
	Mass (kg)	11.5	13.7	16.0	20.5	23.0	23.0
			•				
4	Age	7	2	a	10	11	12

Age (years)	7	8	9	10	11	12
Mass (kg)	30.0	33.0	39.0	38.5	41.0	49.5

2. Determine, without graphing, which type of relationship (linear, quadratic, or neither) best models this table of values. Explain.

х	-1	0	1	2	3
y	1	2	-3	-14	-31

2.1 Quadratic Expressions (Spring 2020)-s20

p. 68 3. State the degree of each function and whether each is linear, or quadratic, or neither.

a)
$$f(x) = -8 + 3x$$

b)
$$g(x) = 4x^2 - 3x + 5$$

c)
$$y = (x - 4)(4x^2 - 3)$$

4. Evaluate the function $f(x) = 3x^2 - 3x + 1$ at the given values.

a)
$$f(-1)$$
 b) $f(3)$ c) $f(0.5)$

b)
$$f(3)$$

c)
$$f(0.5)$$

5. For each of the following, determine f(3).

a)
$$f = \{(1,2), (2,3), (3,5), (4,5)\}$$

-, j ((-,-), (-,-),					
b)	x	1	3	5	7
	f(x)	2	4	6	8

c)
$$f(x) = 4x^2 - 2x + 1$$

p. 68 6. Use transformations to determine the vertex, axis of symmetry, and direction of opening of each parabola. Sketch the graph.

a)
$$y = x^2 - 7$$

b)
$$y = -(x+1)^2 + 10$$

c)
$$y = -\frac{1}{2}(x+2)^2 - 3$$

d)
$$y = 2(x - 5)^2$$

7. Describe how the graph of $y = x^2$ can be transformed to the graphs of the relations from question 6.

8. a) Describe how the graph of $y = x^2$ can be transformed into the graph of the given quadratic function.

i)
$$y = 5x^2 - 4$$

ii)
$$y = \frac{1}{4}(x-5)^2$$

iii)
$$y = -3(x+5)^2 - 7$$

b) List the domain and range of each function. Compare these with the original graph of $y = x^2$.

- p. 69 **9.** a) Describe the transformations to the graph of $y = x^2$ to obtain $y = -2(x+5)^2 3$. b) Graph $y = x^2$. Then apply the
 - b) Graph $y = x^2$. Then apply the transformations in part (a) to graph $y = -2(x + 5)^2 3$.

- **10.** The graphs of $f(x) = x^2$ (in green) and another parabola (in black) are shown.
 - a) Draw a combination of transformations that would produce the second parabola from the first.
 - **b**) Determine a possible equation for the second parabola.

p. 70

- 1. For each of the following relations, state
 - i) the domain and range
 - ii) whether or not it is a function, and justify your answer

a)
$$f = \{(1, 2), (3, 1), (4, 2), (7, 2)\}$$

b)

c)

- **2.** Define the term *function* and give an example and a non-example.
- **3.** Use a difference table to determine whether the data in the table at the left represent a linear or quadratic relationship. Justify your decision.

Time (s)	Height (m)
0	0
1	30
2	40
3	40
4	30
5	0

2.1 Quadratic Expressions (Spring 2020)-s20

February 24, 2020

p. 70 **4.** If
$$f(x) = 3x^2 - 2x + 6$$
, determine
a) $f(2)$ b) $f(x-1)$

5.
$$f(x) = 3(x-2)^2 + 1$$

- a) Evaluate f(-1).
- **b)** What does f(1) represent on the graph of f?
- c) State the domain and range of the relation.
- -d) How do you know if f is a function from its graph?
- e) How do you know if f is a function from its equation?

- **6.** A function is defined by the equation $d(x) = 5(x-3)^2 + 1$.
 - a) List the transformations to the graph of $f(x) = x^2$ to get d(x).
 - b) What is the maximum or minimum value of the transformed function d(x)?
 - c) State the domain and range of d(x).
 - d) Graph the function d(x).

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) multiply 2 binomials.
- b) expand and simplify the product of a monomial and two binomials.

2.1 Working with Quadratic Expressions

Recall: When multiplying, multiply the coefficients; and add the exponents if the variables are the same.

Ex.1 Multiply the following.
a)
$$4x(3x-7)$$
 b) $(3x-7)$ $= 12x^2-28x$

b)
$$(3x-2)(4x+5)$$
= $12x^2 + 15x - 8x - (0)$
= $12x^2 + 7x - (0)$

$$c_{1}(x+1)^{2} c_{2}(x+3)^{2} c_{3}(x+5)^{2} c_{4}(x-4)^{2}$$

$$= (x+1)(x+1) = (x+3)(x+3) = (x+3)(x+5) = (x+3)(x+5) = (x+4)(x-4)^{2}$$

$$= x^{2} + 1x + 1x + 1 = x^{3} + 3x + 3x + 9 = x^{2} + 5x + 5x + 35 = x^{3} - 4x + 16$$

$$= x^{3} + 2x + 1 = x^{3} + 6x + 9 = x^{2} + 10x + 25 = x^{3} - 6x + 16$$

d)
$$(3x-4)^2$$
 e) $2(x+3)^2$ f) $-2(x+6)(5x-2)$
= $9x^2 - 24x + 16$ = $2(x^2 + 6x + 9)$ = $-2(5x^2 - 2x + 30x - 12)$
= $2x^2 + 12x + 18$ = $-2(5x^2 + 28x - 12)$
= $-(0x^2 - 56x + 24)$

g)
$$5(y-6)(y+2)-(2y+3)(4y-1)$$

 $=5(y^2+2y-6y-12)-(8y^2-2y+12y-3)$
 $=5(y^2-4y-12)-(8y^2+10y-3)$
 $=5y^2-20y-60-8y^2-10y+3=$

$$= -3y^{2} - 30y - 57$$
Challenge

A)
$$(3x^{5}y - 2x^{3}y^{4}z)^{2}$$

$$= 9 \times {}^{10}y^{2} - 12x^{3}y^{5}z + 4x^{6}y^{2}z^{2}$$
B) $(2x^{3}y - 3x^{5}y^{4}z)^{2}$

$$= (2x^{3}y - 3x^{5}y^{4}z)^{2}$$

$$= (2x^{3}y - 3x^{5}y^{4}z)^{2}$$

B)
$$(2x^3y - 3x^5y^4z)^2$$

$$= (2x^3y - (2x^3y^2 + 9x^4y^2)^2 + 9x^4y^8z^2$$

Ex. 2 Express the area of the large rectangle as a function of x.

Be fully prepared for tomorrow's Unit 1 Summative

Assigned Practice: pp.85-87 #2, 3, 5 - 7, 14

Be sure to keep up with your homework....

there is a SWYKs in a few days,
and the next Unit Summative is only 2 weeks away!