Today's Learning Goal(s):

Date: ______(Every lesson)

By the end of the class, I will be able to:

a) apply all transformations to the parent functions.

Last day's Assigned Practice: READ pp.61-69

1968 At the Grammy Awards, the Best Female R&B Vocal Performance category is given for the first time, and <u>Aretha Franklin</u> wins it for "<u>Respect</u>." She wins the award again each of the next seven years.

p. 70 #1 – 3, 4abc, 5ab

3. Complete the table for the point (1, 1).

$$\frac{f(x)}{f(3x)} = \frac{f(-3x)}{f(-3x)} = \frac{f(-3$$

5. Sketch each set of functions on the same set of axes.

a)
$$y = x^2, y = 3x^2, y = 3(x - 2)^2 + 1$$

b)
$$y = \sqrt{x}, y = \sqrt{3x}, y = \sqrt{-3x}, y = \sqrt{-3(x+1)} - 4$$

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) apply all transformations to the parent functions.
- 1.8 Graphing y=af[k(x-d)]+c (Day 2)

- Ex.1 The following transformations are applied to the square root function. (i.e. $f(x) = \sqrt{x}$)
 - Horizontal stretch by a factor of 3
 - Vertical stretch by a factor of 2
 - Reflection in the y-axis
 - Translation 5 units right and 4 units up

Write the equation for the final transformed function g(x).

$$g(x) = 2\sqrt{-\frac{1}{3}(x-5)} + 4$$

Determine the equation for the final transformed function h(x), under the same set of transformations, but f(x) = |x|.

$$a(x) = 2 \left| \frac{1}{3}(x-5) \right| + 4$$

Ex.2 a) Sketch the graphs of f(x) and g(x) on the same grid.

$$f(x) = \sqrt{x}$$
 $y = \sqrt{-\frac{1}{3}(x-5) + 4}$ $y = \sqrt{x}$

b) State the domain and range of both functions.

Ex.3 For f(x) = |x| sketch the graph of g(x) = f(-5x+10)-2.

Remember: Factor first! $g(x) = \begin{vmatrix} -5x + 70 \end{vmatrix} - 2$ $= \begin{vmatrix} -5(x - 3) \end{vmatrix} - 2$ (backwards world) g(x) $= \begin{vmatrix} -6 & 4 & 2 & 0 & 4 & 6 & 8 & 10 \\ -7 & 3 & 3 & 4 & 4 & 6 & 6 \\ -7 & 7 & 8 & 8 & 9 & 9 \\ -10 & 8 & 6 & 4 & 2 & 0 & 4 & 6 & 8 & 10 \\ -7 & 8 & 8 & 9 & 9 & 10 & 9 \\ -10 & 8 & 6 & 4 & 2 & 0 & 4 & 6 & 8 & 10 \\ -7 & 8 & 8 & 9 & 9 & 10 & 9 \\ -7 & 8 & 8 & 9 & 9 & 10 & 9 \\ -7 & 8 & 9 & 9 & 9 & 10 & 9 \\ -7 & 9 & 9 & 9 & 9 & 10 & 9 \\ -7 & 9 & 9 & 9 & 9 & 10 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 10 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 & 9 \\ -7 & 9 & 9 & 9 &$

y =

one method is to map, a few key points using just *a* & *k*, then translate them.

In general, given: y=af[k(x-d)]+c

$$(,) \rightarrow (,)$$
 $(x,y) \longrightarrow (\frac{1}{k}x + d, ay + c)$

Check mapping?

$$(x,y) \rightarrow (3x+1,-2y+4)$$

$$(1,1) \rightarrow (4,2)$$

Are there any assigned practice questions you would like to see on the board?

Last day's Assigned Pracce: **READ pp.61-69**

p. 70 #1 – 3, 4abc, 5ab

Today's Assigned Practice includes:

pp. 70-71 #4def, 5cd, 6a, 7a

(Work Ahead: pp. 76-77 #1 – 5, 7, 8, 13 – 19)

