_	_ 1	1 (•	▼	1	/ \	
	Γ	lav	'S	Learning	(ioal(S) :
			_			\sim .	, -

Date:

By the end of the class, I will be able to:

a) determine the inverse of functions.

SWYK First?

Return and Correct Yesterday's Checkpoint 2.1

Last day's assigned practice: pp. 70-71 #4def, 5cd, 6a, 7a

Correct Homework?

y = a f(k(x-d))+(

5. Sketch each set of functions on the same set of axes.

a)
$$y = x^2$$
, $y = 3x^2$, $y = 3(x - 2)^2 + 1$

b)
$$y = \sqrt{x}, y = \sqrt{3x}, y = \sqrt{-3x}, y = \sqrt{-3(x+1)} - 4$$

c)
$$y = \frac{1}{x}, y = \frac{2}{x}, y = -\frac{2}{x}, y = -\frac{2}{x-1} + 3$$

d)
$$y = |x|, y = \left|\frac{1}{2}x\right|, y = -\left|\frac{1}{2}x\right|, y = -\left|\frac{1}{2}(x+3)\right| - 2$$

J=-/2x(x+3)/-2

Show What You Know

postponed until next class.

Today's Learning Goal(s):

By the end of the class, I will be able to:

a) determine the inverse of functions.

1.5 Inverse Functions

Date: Feb. 28/20

Inverse functions "undo" each other.

Ex.1 Complete the tables of values for each function:

$$y = 2x + 1$$

x	y
0	1
1	3
2	2
3	7

$$y = \frac{x-1}{2}$$

x	y
1	\bigcirc
3	
5	2
7	3

Do you see a relationship between each of the equations above?

$$y = \frac{x-1}{2}$$
 is the inverse of $y = 2x + 1$ because it "undoes" the function $y = 2x + 1$.

To determine the inverse of a function the *x* and *y* values are interchanged. In other words the domain and the range switch.

The inverse of a relation can be found by interchanging the domain & range: $(x, y) \rightarrow (y, x)$

Ex.2 What is the inverse of $\{(1, 5), (-3, 8), (9, 2), (7, -4)\}$?

If the inverse of a function f(x) is also a function, it is denoted $f^{-1}(x)$ [Read as "the inverse of f" or "f-inverse"]

Ex.3 Find the inverse of the following functions and sketch the graphs of f(x) and it's inverse.

≤linear: y=mx+b

b= 3

slope I run

interchange x+y

f(x): y = 4x+3 X = 4y+3 X = 4y

$$y = 4x + 3$$

-8 -7 -6 -5 -4 -3 -2

$$f'(x) = \frac{1}{4}x - \frac{3}{4}$$

$$y = \frac{1x - 3}{4}$$

If time,

(otherwise, continue to summary on next slide)

b)
$$g(x) = (x-3)^2 - 4$$

 $y = (x-3)^2 - 4$

Inverse:

$$X = (y-3)^2 - 4$$

 $X + 4 = (y-3)^2$

$$\pm \sqrt{x} + 4 = y - 3$$
 $\pm \sqrt{x} + 4 + 3 = y$

use function notation

because the inverse is NOT a Function.

$$y = (x - 3)^2 - 4$$

$$y = \sqrt{x+4} + 3$$

$$y = -\sqrt{x+4} + 3$$

What do you notice about the inverse function graphs?

They reflect in the y = x line.

In summary,

 $f^{-1}(x)$ reflects in the line y = x

-f(x) reflects in the x-axis

f(-x) reflects in the y-axis

Are there any questions from last day's assigned work you would like to see on the board?

Last day's assigned pracce: pp. 70-71 #4def, 5cd, 6a, 7a

Today's Assigned Practice includes:

READ pp.41-46

pp. 46-49 #2 – 4, (5 – 7)ace, 12 [19, 20]