...BLM 2-9...

Chapter 2 Review

2.1 Midpoint of a Line Segment

1. Find the midpoint of each line segment.

- **2.** a) Determine the midpoint of the line segment with endpoints E(-6, 7) and F(-2, 1).
 - **b)** Determine the midpoint of the line segment with endpoints E(-5, -9) and F(2, 4).
- **3.** a) Draw the triangle with vertices A(-5, 2), B(-1, -4), and C(3, 3).
 - **b**) Draw the median from vertex A. Then, find an equation in the form y = mx + b for this median.
 - c) Draw the right bisector of AC. Then, find an equation in the form y = mx + b for this right bisector.
 - **d)** Draw the altitude from vertex C. Then, find an equation in the form y = mx + b for this altitude.

2.2 Length of a Line Segment

- **4.** Determine the length of the line segment defined by each pair of points.
 - **a)** R(-5, 6) and S(-2, 6)
 - **b)** T(4, -5) and U(4, 5)
 - c) M(-5, 6) and N(3, -4)
 - **d)** P(-2, 6) and Q(7, -3)
- **5.** a) Determine the length of the median from vertex R of $\triangle PQR$.
 - b) Determine the perimeter of △PQR.
 Round your answer to the nearest tenth of a unit.

- **6.** a) Draw the triangle with vertices X(1, 4), Y(-3, -2), and Z(3, -6).
 - **b)** Use analytic geometry to show that $\angle XYZ = 90^{\circ}$.
 - c) Determine the area of $\triangle XYZ$.

2.3 Apply Slope, Midpoint, and Length Formulas

7. Show that the triangle with vertices P(-1, 0), $Q(0, \sqrt{3})$, and R(1, 0) is equilateral.

8. a) Show algebraically that this triangle is isosceles.

- **b)** Find the midpoints of the equal sides.
- c) Show algebraically that the line segment joining the midpoints of the equal sides is parallel to the third side of the triangle.
- **9.** On a map, a ski hill has a chair lift running straight from A(30, 25) to B(60, 55).
 - **a)** How long is the section of the chair lift if each unit on the map grid represents 1 m, to the nearest tenth of a metre?
 - **b)** Is the point C(50, 45) on the chair lift? Explain your reasoning.

2.4 Equation for a Circle

10. Determine an equation for each circle.

- **11.** Find an equation for the circle that is centred at the origin and
 - a) has a radius of 3.7
 - **b)** has a radius of $\sqrt{8}$
 - c) has a diameter of 18
 - **d**) passes through the point (3, 5)
- **12.** a) Show that the line segment joining C(-2, 5) and D(-5, 2) is a chord of the circle defined by $x^2 + y^2 = 29$.
 - **b**) Determine an equation for the right bisector of the chord CD.
- **13.** a) Show that point B(-3, -2) lies on the circle defined by $x^2 + y^2 = 13$.
 - **b)** Find an equation for the radius from the origin O to point B.
 - **c**) Find an equation for the line that passes through B and is perpendicular to OB.

(page 3)

- **Chapter 2 Review**
- **1.** a) $\left(1, \frac{1}{2}\right)$ b) $\left(\frac{1}{2}, -\frac{1}{2}\right)$
- **2. a)** (-4, 4) **b)** $\left(-\frac{3}{2}, -\frac{5}{2}\right)$

3. a), b), c), d)

- **b)** $y = -\frac{5}{12}x \frac{1}{12}$ **c)** $y = -8x \frac{11}{2}$
- **d**) $y = \frac{2}{3}x + 1$
- **4.** a) 3
- **b**) 10
- c) $\sqrt{164}$
- **d**) $\sqrt{162}$
- **5.** a) $\sqrt{53}$
- **b**) 21.8
- 6. a)

- **b**) slope $XY = \frac{3}{2}$; slope $YZ = -\frac{2}{3}$; since the slopes are negative reciprocals, $\angle XYZ = 90^{\circ}$.
- c) 26 square units

- 7. PQ = QR = PR = 2; all three sides have equal length, so $\triangle PQR$ is equilateral.
- **8.** a) DE = EF = $\sqrt{26}$; since two sides have equal length, $\triangle DEF$ is isosceles.
 - **b)** $G\left(-\frac{3}{2}, \frac{1}{2}\right)$ is the midpoint of DE; $H\left(\frac{1}{2}, \frac{7}{2}\right)$ is
 - c) slope GH = $\frac{3}{2}$; slope DF = $\frac{3}{2}$; since the slopes are equal, the two segments are parallel.
- **9. a)** 42.4 m
 - **b)** Yes. The line y = x 5 contains the points A and B. Since it also contains the point C, and C is between A and B, C is on the chair lift.
- **10.** a) $x^2 + y^2 = 49$ b) $x^2 + y^2 = 37$ c) $x^2 + y^2 = 6.25$

- **11. a)** $x^2 + y^2 = 13.69$ **b)** $x^2 + y^2 = 8$ **c)** $x^2 + y^2 = 81$ **d)** $x^2 + y^2 = 34$ **12. a)** Check that both endpoints are on the circle. C(-2, 5):

L.S. =
$$x^2 + y^2$$
 R.S. = 29
= $(-2)^2 + 5^2$
= $4 + 25$
= 29

$$L.S. = R.S.$$

D(-5, 2):

L.S. =
$$x^2 + y^2$$
 R.S. = 29
= $(-5)^2 + 2^2$
= $25 + 4$
= 29

$$L.S. = R.S.$$

- **b)** y = -x
- 13. a) Check that the point B(-3, -2) satisfies the equation $x^2 + y^2 = 13$.

L.S. =
$$x^2 + y^2$$
 R.S. = 13
= $(-3)^2 + (-2)^2$
= $9 + 4$
= 13

L.S. = R.S.

$$y = \frac{2}{3}x$$
 c)