

Chapter 4 Review

1. Use finite differences to determine whether each relation is linear, quadratic, or neither.

a)	X	У
	1	3
	x 1 2 3 4	10
	3	29
	4	66
	5	127
b)	X	У
	-2	12
	-1	3
	0	0
	1 2	3
	2	12
c)	X	У
	1	5
	3	13
	x 1 3 5	21
	7	29
	9	37

2. Sketch the graph of each parabola and describe its transformations from the relation $y = x^2$.

a)
$$y = (x + 3)^2$$
 b) $y = x^2 + 2$
c) $y = \frac{1}{3}x^2$ **d)** $y = -3x^2$

- **3.** Write an equation for the parabola that satisfies each set of conditions.
 - a) vertex (3, 4), opening downward with a vertical stretch by a factor of 3
 - **b**) vertex (-1, 2), opening upward with a vertical compression by a factor of $\frac{1}{2}$
 - c) vertex (-2, -4), opening downward with

4. Copy and complete the table for each parabola. Replace the heading for the second column with the equation for the parabola.

a)
$$y = (x + 2)^2 + 3$$

b) $y = 4(x - 5)^2 - 1$
c) $y = -\frac{1}{2}(x + 2)^2 - 3$

d)
$$y = -(x-3)^2 - 4$$

Property	$y = a(x-h)^2 + k$
vertex	
axis of symmetry	
stretch or	
compression	
direction of opening	
values that x may	
take	
values that y may	
take	

- **5.** Sketch each parabola in question 6.
- 6. A store can increase revenue by increasing the price of its T-shirts. The revenue, *R*, in dollars, can be modelled by the relation $R = -50(d - 3.5)^2 + 4000$, where *d* represents the dollar increase in price.
 - **a**) Graph the relation for $0 \le d \le 10$.
 - **b**) What is the maximum revenue?
 - c) What dollar increase corresponds to the maximum revenue?

no vertical stretch

Name: _____

Date: _____

7. Write an equation for each parabola.

- **8.** Find an equation for the parabola with vertex (-3, 1) that passes through the point (-2, -1).
- **9.** Find an equation for the parabola with vertex (4, 3) that passes through the point (10, -9).