\qquad
\qquad

Chapter 4 Review

1. Use finite differences to determine whether each relation is linear, quadratic, or neither.
a)

x	y
1	3
2	10
3	29
4	66
5	127

b)

x	y
-2	12
-1	3
0	0
1	3
2	12

c)

x	y
1	5
3	13
5	21
7	29
9	37

2. Sketch the graph of each parabola and describe its transformations from the relation $y=x^{2}$.
a) $y=(x+3)^{2}$
b) $y=x^{2}+2$
c) $y=\frac{1}{3} x^{2}$
d) $y=-3 x^{2}$
3. Write an equation for the parabola that satisfies each set of conditions.
a) vertex (3, 4), opening downward with a vertical stretch by a factor of 3
b) vertex ($-1,2$), opening upward with a vertical compression by a factor of $\frac{1}{2}$
c) vertex $(-2,-4)$, opening downward with no vertical stretch
4. Copy and complete the table for each parabola. Replace the heading for the second column with the equation for the parabola.
a) $y=(x+2)^{2}+3$
b) $y=4(x-5)^{2}-1$
c) $y=-\frac{1}{3}(x+2)^{2}-3$
d) $y=-(x-3)^{2}-4$

Property	$y=a(x-h)^{2}+k$
vertex	
axis of symmetry	
stretch or compression	
direction of opening	
values that x may take	
values that y may take	

5. Sketch each parabola in question 6.
6. A store can increase revenue by increasing the price of its T-shirts. The revenue, R, in dollars, can be modelled by the relation $R=-50(d-3.5)^{2}+4000$, where d represents the dollar increase in price.
a) Graph the relation for $0 \leq d \leq 10$.
b) What is the maximum revenue?
c) What dollar increase corresponds to the maximum revenue?

Name: \qquad Date: \qquad
7. Write an equation for each parabola.
a)

c)

8. Find an equation for the parabola with vertex $(-3,1)$ that passes through the point $(-2,-1)$.
9. Find an equation for the parabola with vertex $(4,3)$ that passes through the point $(10,-9)$.

