1.8.1: Solving Exponential Equations Using Logarithms

Date: \qquad
Laws of Logarithms for Powers $\log _{a} x^{n}=n \log _{a} x \quad[x>0, a>0, a \neq 1]$

$$
\begin{array}{lll}
\text { Ex. } 1 & \log 8 \\
= & \text { and } & \log 8 \\
& & =\log 2^{3} \\
& =3 \log 2 \\
& =3(0.301) \\
& & =0.903
\end{array}
$$

New: To solve an exponential equation, take the logarithm of each side.
Ex. 2 Solve each equation to 3 decimal places.
a) $2^{x}=55$

Method 1 Method 2
b) $5^{x}=20$
c) $3^{2 x+1}=14$

Law of Logarithms for Multiplication
$\log _{a} x y=\log _{a} x+\log _{a} y \quad[x>0, y>0, a>0, a \neq 1]$

Law of Logarithms for Division
$\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y \quad[x>0, y>0, a>0, a \neq 1]$

Ex. 3 [from 1.4.1 Ex. 2b] Suppose you invest \$1000 at 8\% per year, compounded quarterly.
b) Estimate how many years it takes for the investment to grow to $\$ 2800$.

$$
2800=1000(1.02)^{4 x}
$$

Method 1
Method 2

