\qquad
The Sine Law can be used with any triangle, even if it is not a right triangle.
Given any triangle,

$$
\begin{aligned}
& \text { (1) } \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& \text { and } \\
& \text { (2) } \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
\end{aligned}
$$

If you are trying to determine an unknown side, then use the formula given in $\underline{\underline{(1)}}$.
If you are trying to determine an unknown angle, then use the formula given in (2).
Ex. 1 Solve the triangle. (Round side lengths and angles to one decimal place.)

Diagram is not drawn to scale.

turn over ${ }_{4}^{4}$			

Ex. 2 Solve the triangle. (Round side lengths and angles to one decimal place.)

Today's Entertainment:
pp. 31-33 \#1a, 2b, 3b, 5, 7 (write an explanation - you don't need a partner), 9

