KEY CONCEPTS

- A function of the form $y=a b^{x}$ is an exponential function for $b>0, b \neq 1$.
- The graph of $y=a b^{x}$ represents exponential growth and is increasing if $a>0$ and $b>1$. The domain is $\{x \in \mathbb{R}\}$, the range is $\{y \in \mathbb{R}, y>0\}$, the y-intercept is a, and the horizontal asymptote is $y=0$.

- The graph of $y=a b^{x}$ represents exponential decay and is decreasing if $a>0$ and $0<b<1$. The domain is $\{x \in \mathbb{R}\}$, the range is $\{y \in \mathbb{R}, y>0\}$, the y-intercept is a, and the horizontal asymptote is $y=0$.

- If you are given enough information about the graph or the properties of an exponential function, it is possible to write an equation or sketch a graph to model the function.
- Equations in one variable, such as $2^{x}=16$, can be solved by finding the point of intersection of the corresponding graphs $y=2^{x}$ and $y=16$. The solution to the equation will be the x-coordinate of the point of intersection.

- Exponential equations in one variable can be solved graphically using technology.
- Many real-world applications can be modelled using an exponential function. Some examples are population growth, compound interest, and depreciation.

