1. Suppose a principal of P dollars is invested at 3.75% compounded annually.

After n years, the amount is $\$ 5000$. This situation is modelled by the equation $P=5000(1.0375)^{-n}$, where P is the present value.
a) How much should be invested today to have $\$ 5000$ after 10 years?
b) Suppose $\$ 3000$ are invested today. How long will it take until the amount is $\$ 5000$?
3. Write in exponential form.
a) $\log _{2} 32=5$
b) $\log _{3} 3=1$
c) $\log _{10} 1=0$
d) $\log _{4}\left(\frac{1}{16}\right)=-2$
e) $\log _{5} 0.008=-3$
f) $\log _{8} 64=2$
4. Write in logarithmic form.
a) $2^{10}=1024$
b) $10^{2}=100$
c) $10^{-2}=0.01$
d) $25^{\frac{1}{2}}=5$
e) $16^{\frac{3}{2}}=64$
f) $1296^{0.25}=6$
5. Evaluate each logarithm.
a) $\log 1$
b) $\log 10000$
c) $\log _{3} 729$
d) $\log _{9}\left(\frac{1}{9}\right)$
e) $\log _{4} 0.0625$
f) $\log _{2} 0.125$
6. Simplify each expression.
a) $\log 10^{4}$
b) $\log _{4} 4^{5}$
c) $10^{\log 1000}$
d) $2^{\log _{2} 4}$
7. Solve each equation to 4 decimal places. Check the solution.

a) $10^{x}=15$
b) $9^{x}=30$
c) $8^{x}=3$
d) $5^{x}=100$
e) $3^{x}=2$
f) $2^{x}=3$
8. The number of mutual funds available in Canada, M, is modelled by the equation $M=460(1.19)^{n}$, where n is the number of years since 1989 .
a) When will the number of mutual funds reach 10000 ?
b) How many years will it take for the number of mutual funds to triple?
10. Radioactive tritium has a half-life of 12 years. A sample of this material has a mass of 1000 g . An equation that models the mass, m grams, remaining after t years is $m=1000(0.9439)^{t}$.
a) How much radioactive tritium remains after 100 years?
b) How long does it take until only 100 g of the radioactive tritium remain?
15. Two historical purchases of land in North America are given. In each case, if the money had been invested at 6% compounded annually, what would its value be today?
a) In 1867, the United States purchased Alaska from Russia for $\$ 7200000$.
b) In 1626, Manhattan Island was sold for $\$ 24$.

