KEY CONCEPTS

- Exponential equations in one variable can be solved by determining a common base.
- The solutions to exponential equations may be exact answers or approximate answers. When solutions to exponential equations cannot be easily determined by finding a common base, approximate solutions can be found using systematic trial on a scientific calculator.

Example

- a) Solve the exponential equation $2^{5x+2} = 8^x$ by determining a common base.
- b) Use substitution to verify your answer to part a).

Solution

a) $2^{5x+2} = 8^x$ $2^{5x+2} = (2^3)^x$ $2^{5x+2} = 2^{3x}$	Rewrite 8 using a base of 2. Apply the power of a power rule.	
5x + 2 = 3x	e equal, the exponents m Solve for x .	nust be equal.
2x = -2 x = -1 The solution is $x = -1$	$ \begin{array}{l} c_{1} = -1, \end{array} $	
	R.S. = 8^x	
$= 2^{5(-1) + 2}$ = 2^{-5 + 2} = 2^{-3} = $\frac{1}{2^{-3}}$	$= 8^{(-1)} = 8^{-1} = \frac{1}{8}$	
23	a) Graph the fun b) Which values function indi-	