KEY CONCEPTS

- The degree of a polynomial function $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ determines the end behaviour as x approaches positive infinity $(x \rightarrow \infty)$ and as x approaches negative infinity $(x \rightarrow-\infty)$.
- The leading coefficient is the coefficient of the term that is used to determine the degree of a polynomial function. It may be a positive number or a negative number.
- A polynomial function may be an odd-degree polynomial or an even-degree polynomial, as shown in the chart.

	Odd-Degree Polynomial		Even-Degree Polynomial	
Leading Coefficient	positive	negative	positive	negative
End Behaviour	$\begin{aligned} & \text { as } x \rightarrow-\infty, y \rightarrow-\infty \text {; } \\ & \text { as } x \rightarrow \infty, y \rightarrow \infty \\ & \text { (similar to the graph } \\ & \text { of } y=x \text {) } \end{aligned}$	$\begin{aligned} & \text { as } x \rightarrow-\infty, y \rightarrow \infty \\ & \text { as } x \rightarrow \infty, y \rightarrow-\infty \\ & \text { (similar to the } \\ & \text { graph of } y=-x \text {) } \end{aligned}$	$\begin{aligned} & \text { as } x \rightarrow-\infty, y \rightarrow \infty ; \\ & \text { as } x \rightarrow \infty, y \rightarrow \infty \\ & \text { (similar to the } \\ & \text { graph of } y=x^{2} \text {) } \end{aligned}$	$\begin{aligned} & \text { as } x \rightarrow-\infty, y \rightarrow-\infty ; \\ & \text { as } x \rightarrow \infty, y \rightarrow-\infty \\ & \text { (similar to the graph } \\ & \text { of } y=-x^{2} \text {) } \end{aligned}$
Sketch				
Domain	$\{x \in \mathbb{R}\}$		$\{x \in \mathbb{R}\}$	
Range	$\{y \in \mathbb{R}\}$		$\{y \in \mathbb{R}, y \geq a\}$	$\{y \in \mathbb{R}, y \leq a\}$
Maximum/ Minimum Value	neither a maximum value nor a minimum value		minimum value is a	maximum value is a

