KEY CONCEPTS

- The degree of a polynomial function
 f(x) = a_nxⁿ + a_{n-1}xⁿ⁻¹ + a_{n-2}xⁿ⁻² + ··· + a₂x² + a₁x + a₀
 determines the end behaviour as x approaches positive infinity (x → ∞) and as
 x approaches negative infinity (x → -∞).
- The leading coefficient is the coefficient of the term that is used to determine the degree of a polynomial function. It may be a positive number or a negative number.
- A polynomial function may be an odd-degree polynomial or an even-degree polynomial, as shown in the chart.

	Odd-Degree Polynomial		Even-Degree Polynomial	
Leading Coefficient	positive	negative	positive	negative
End Behaviour	as $x \to -\infty$, $y \to -\infty$; as $x \to \infty$, $y \to \infty$ (similar to the graph of $y = x$)	as $x \to -\infty$, $y \to \infty$; as $x \to \infty$, $y \to -\infty$ (similar to the graph of $y = -x$)	as $x \to -\infty$, $y \to \infty$; as $x \to \infty$, $y \to \infty$ (similar to the graph of $y = x^2$)	as $x \to -\infty$, $y \to -\infty$ as $x \to \infty$, $y \to -\infty$ (similar to the graph of $y = -x^2$)
Sketch	(
Domain	$\{x \in \mathbb{R}\}$		$\{x \in \mathbb{R}\}$	
Range	$\{y \in \mathbb{R}\}$		$\{y \in \mathbb{R}, y \ge a\}$	$\{y \in \mathbb{R}, y \le a\}$
Maximum/ Minimum Value	neither a maximum value nor a minimum value		minimum value is <i>a</i>	maximum value is <i>a</i>